Fangyi Yu
2025
Beyond Pointwise Scores: Decomposed Criteria-Based Evaluation of LLM Responses
Fangyi Yu
|
Nabeel Seedat
|
Drahomira Herrmannova
|
Frank Schilder
|
Jonathan Richard Schwarz
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Evaluating long-form answers in high-stakes domains such as law or medicine remains a fundamental challenge. Standard metrics like BLEU and ROUGE fail to capture semantic correctness, and current LLM-based evaluators often reduce nuanced aspects of answer quality into a single undifferentiated score. We introduce DeCE, a decomposed LLM evaluation framework that separates precision (factual accuracy and relevance) and recall (coverage of required concepts), using instance-specific criteria automatically extracted from gold answer requirements. DeCE is model-agnostic and domain-general, requiring no predefined taxonomies or handcrafted rubrics. We instantiate DeCE to evaluate different LLMs on a real-world legal QA task involving multi-jurisdictional reasoning and citation grounding. DeCE achieves substantially stronger correlation with expert judgments (r=0.78), compared to traditional metrics (r=0.12) and pointwise LLM scoring (r=0.35). It also reveals interpretable trade-offs: generalist models favor recall, while specialized models favor precision. Importantly, only 11.95% of LLM-generated criteria required expert revision, underscoring DeCE’s scalability. DeCE offers an interpretable and actionable LLM evaluation framework in expert domains.
2023
Exploring the Effectiveness of Prompt Engineering for Legal Reasoning Tasks
Fangyi Yu
|
Lee Quartey
|
Frank Schilder
Findings of the Association for Computational Linguistics: ACL 2023
The use of large language models (LLMs) for zero- or few-shot prompting in natural language processing has given rise to a new research area known as prompt engineering. Recent studies have demonstrated that Chain-of-Thought (CoT) prompts can lead to significant improvements in tasks such as arithmetic and common-sense reasoning. This paper explores the use of such approaches in legal reasoning tasks by conducting experiments on the COLIEE entailment task, which is based on the Japanese Bar exam. We evaluate zero-shot/few-shot and fine-tuning approaches with and without explanations, as well as various prompting strategies. Our results indicate that while CoT prompting and fine-tuning with explanations can improve performance, the best results are achieved with prompts derived from specific legal reasoning techniques, such as IRAC (Issue, Rule, Application, Conclusion). In addition, we observe that few-shot learning where the demonstrations are derived from clustering past training data consistently yields high performance on the COLIEE entailment task for both the years of the data that we tested. Through our experiments, we improve the previous best result on the 2021 COLIEE task from 0.7037 to 0.8025 and surpass the best system from 2022 with an accuracy of 0.789.