Fangcheng Fu
2025
Enhancing Unsupervised Sentence Embeddings via Knowledge-Driven Data Augmentation and Gaussian-Decayed Contrastive Learning
Peichao Lai
|
Zhengfeng Zhang
|
Wentao Zhang
|
Fangcheng Fu
|
Bin Cui
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recently, using large language models (LLMs) for data augmentation has led to considerable improvements in unsupervised sentence embedding models. However, existing methods encounter two primary challenges: limited data diversity and high data noise. Current approaches often neglect fine-grained knowledge, such as entities and quantities, leading to insufficient diversity. Besides, unsupervised data frequently lacks discriminative information, and the generated synthetic samples may introduce noise. In this paper, we propose a pipeline-based data augmentation method via LLMs and introduce the Gaussian-decayed gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance unsupervised sentence embeddings. To tackle the issue of low data diversity, our pipeline utilizes knowledge graphs (KGs) to extract entities and quantities, enabling LLMs to generate more diverse samples. To address high data noise, the GCSE model uses a Gaussian-decayed function to limit the impact of false hard negative samples, enhancing the model’s discriminative capability. Experimental results show that our approach achieves state-of-the-art performance in semantic textual similarity (STS) tasks, using fewer data samples and smaller LLMs, demonstrating its efficiency and robustness across various models.
Improving Low-Resource Sequence Labeling with Knowledge Fusion and Contextual Label Explanations
Peichao Lai
|
Jiaxin Gan
|
Feiyang Ye
|
Wentao Zhang
|
Fangcheng Fu
|
Yilei Wang
|
Bin Cui
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Sequence labeling remains a significant challenge in low-resource, domain-specific scenarios, particularly for character-dense languages. Existing methods primarily focus on enhancing model comprehension and improving data diversity to boost performance. However, these approaches still struggle with inadequate model applicability and semantic distribution biases in domain-specific contexts. To overcome these limitations, we propose a novel framework that combines an LLM-based knowledge enhancement workflow with a span-based Knowledge Fusion for Rich and Efficient Extraction (KnowFREE) model. Our workflow employs explanation prompts to generate precise contextual interpretations of target entities, effectively mitigating semantic biases and enriching the model’s contextual understanding. The KnowFREE model further integrates extension label features, enabling efficient nested entity extraction without relying on external knowledge during inference. Experiments on multiple domain-specific sequence labeling datasets demonstrate that our approach achieves state-of-the-art performance, effectively addressing the challenges posed by low-resource settings.