Large language models (LLMs) have demonstrated remarkable capabilities across various domains, yet their application to relational deep learning (RDL) remains underexplored. Existing approaches adapt LLMs by traversing relational links between entities in a database and converting the structured data into flat text documents, but this text-based serialization disregards critical relational structures, introduces redundancy, and often exceeds standard LLM context lengths. We introduce Rel-LLM, a novel architecture that employs a graph neural network (GNN) based encoder to create structured relational prompts for LLMs within a retrieval-augmented generation (RAG) framework. Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to effectively process and reason over complex entity relationships. Specifically, the GNN encoder extracts a local subgraph around an entity to build feature representations that contain relevant entity relationships and temporal dependencies. These representations are transformed into structured prompts using a denormalization process, effectively allowing the LLM to reason over relational structures. Through extensive experiments, we demonstrate that Rel-LLM outperforms existing methods on key RDL tasks, offering a scalable and efficient approach to integrating LLMs with structured data sources. Code is available at
https://github.com/smiles724/Rel-LLM.
Large Language Models (LLMs) with extended context lengths face significant computational challenges during the pre-filling phase, primarily due to the quadratic complexity of self-attention. Existing methods typically employ dynamic pattern matching and block-sparse low-level implementations. However, their reliance on local information for pattern identification fails to capture global contexts, and the coarse granularity of blocks leads to persistent internal sparsity, resulting in suboptimal accuracy and efficiency. To address these limitations, we propose AnchorAttention, a difference-aware, dynamic sparse attention mechanism that efficiently identifies critical attention regions at a finer stripe granularity while adapting to global contextual information, achieving superior speed and accuracy. AnchorAttention comprises three key components: (1) Pattern-based Anchor Computation, leveraging the commonalities present across all inputs to rapidly compute a set of near-maximum scores as anchor; (2) Difference-aware Stripe Sparsity Identification, performing difference-aware comparisons with anchor to quickly obtain discrete coordinates of significant regions in a stripe-like sparsity pattern; (3) Fine-grained Sparse Computation, replacing the traditional contiguous loading strategy with a discrete key-value loading approach to maximize sparsity rates while preserving hardware computational potential. Additionally, we integrate the identification strategy into a single operator to maximize parallelization potential. With its finer-grained sparsity strategy, AnchorAttention achieves higher sparsity rates at the same recall level, significantly reducing computation time. Compared to previous state-of-the-art methods, at a text length of 128k, it achieves a speedup of 1.44× while maintaining higher recall rates.
The integration of sentences poses an intriguing challenge within the realm of NLP, but it has not garnered the attention it deserves. Existing methods that focus on sentence arrangement, textual consistency, and question answering have been shown to be inadequate in addressing this issue. To bridge this gap, we introduce InsertGNN which conceptualizes the problem as a graph and employ a hierarchical Graph Neural Network (GNN) to comprehend the interplay between sentences. Our approach was rigorously evaluated on a TOEFL dataset, and its efficacy was further validated on the expansive arXiv dataset using cross-domain learning. Thorough experimentation unequivocally establishes InsertGNN’s superiority over all comparative benchmarks, achieving an impressive 70% accuracy—a performance on par with average human test scores.