Evgenia Ilia


2025

pdf bib
Learning to vary: Teaching LMs to reproduce human linguistic variability in next-word prediction
Tobias Groot | Salo Lacunes | Evgenia Ilia
Proceedings of the 2nd Workshop on Uncertainty-Aware NLP (UncertaiNLP 2025)

Natural language generation (NLG) tasks are often subject to inherent variability; e.g. predicting the next word given a context has multiple valid responses, evident when asking multiple humans to complete the task. While having language models (LMs) that are aligned pluralistically, so that they are able to reproduce well the inherent diversity in perspectives of an entire population of interest is clearly beneficial, Ilia and Aziz (2024) show that LMs do not reproduce this type of linguistic variability well. They speculate this inability might stem from the lack of consistent training of LMs with data reflecting this type of inherent variability. As such, we investigate whether training LMs on multiple plausible word continuations per context can improve their ability to reproduce human linguistic variability for next-word prediction. We employ fine-tuning techniques for pre-trained and instruction-tuned models; and demonstrate their potential when fine-tuning GPT-2 and Mistral-7B-IT, using Provo Corpus. Our evaluation, which measures divergence among empirically estimated human and model next-word distributions across contexts before and after fine-tuning, shows that our multi-label fine-tuning improves the LMs’ ability to reproduce linguistic variability; both for contexts that admit higher and lower variability.

2024

pdf bib
Predict the Next Word: <Humans exhibit uncertainty in this task and language models _____>
Evgenia Ilia | Wilker Aziz
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Language models (LMs) are statistical models trained to assign probability to human-generated text. As such, it is reasonable to question whether they approximate linguistic variability exhibited by humans well. This form of statistical assessment is difficult to perform at the passage level, for it requires acceptability judgments (i.e., human evaluation) or a robust automated proxy (which is non-trivial). At the word level, however, given some context, samples from an LM can be assessed via exact matching against a prerecorded dataset of alternative single-word continuations of the available context. We exploit this fact and evaluate the LM’s ability to reproduce variability that humans (in particular, a population of English speakers) exhibit in the ‘next word prediction’ task. This can be seen as assessing a form of calibration, which, in the context of text classification, Baan et al. (2022) termed calibration to human uncertainty. We assess GPT2, BLOOM and ChatGPT and find that they exhibit fairly low calibration to human uncertainty. We also verify the failure of expected calibration error (ECE) to reflect this, and as such, advise the community against relying on it in this setting.