2025
pdf
bib
abs
GRAM: Generative Recommendation via Semantic-aware Multi-granular Late Fusion
Sunkyung Lee
|
Minjin Choi
|
Eunseong Choi
|
Hye-young Kim
|
Jongwuk Lee
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Generative recommendation is an emerging paradigm that leverages the extensive knowledge of large language models by formulating recommendations into a text-to-text generation task. However, existing studies face two key limitations in (i) incorporating implicit item relationships and (ii) utilizing rich yet lengthy item information. To address these challenges, we propose a Generative Recommender via semantic-Aware Multi-granular late fusion (GRAM), introducing two synergistic innovations. First, we design semantic-to-lexical translation to encode implicit hierarchical and collaborative item relationships into the vocabulary space of LLMs. Second, we present multi-granular late fusion to integrate rich semantics efficiently with minimal information loss. It employs separate encoders for multi-granular prompts, delaying the fusion until the decoding stage. Experiments on four benchmark datasets show that GRAM outperforms eight state-of-the-art generative recommendation models, achieving significant improvements of 11.5-16.0% in Recall@5 and 5.3-13.6% in NDCG@5. The source code is available at https://github.com/skleee/GRAM.
pdf
bib
abs
Conflict-Aware Soft Prompting for Retrieval-Augmented Generation
Eunseong Choi
|
June Park
|
Hyeri Lee
|
Jongwuk Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Retrieval-augmented generation (RAG) enhances the capabilities of large language models (LLMs) by incorporating external knowledge into their input prompts. However, when the retrieved context contradicts the LLM’s parametric knowledge, it often fails to resolve the conflict between incorrect external context and correct parametric knowledge, known as context-memory conflict. To tackle this problem, we introduce Conflict-Aware REtrieval-Augmented Generation (CARE), consisting of a context assessor and a base LLM. The context assessor encodes external context into compact memory embeddings. Through grounded/adversarial soft prompting, the context assessor is trained to discern unreliable context and capture a guidance signal that directs reasoning toward the more reliable knowledge source. Extensive experiments show that CARE effectively mitigates context-memory conflicts, leading to an average performance gain of 5.0% on QA and fact-checking benchmarks, establishing a promising direction for trustworthy and adaptive RAG systems.
pdf
bib
abs
Multi-view-guided Passage Reranking with Large Language Models
Jeongwoo Na
|
Jun Kwon
|
Eunseong Choi
|
Jongwuk Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model’s ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP.
2024
pdf
bib
abs
Multi-Granularity Guided Fusion-in-Decoder
Eunseong Choi
|
Hyeri Lee
|
Jongwuk Lee
Findings of the Association for Computational Linguistics: NAACL 2024
In Open-domain Question Answering (ODQA), it is essential to discern relevant contexts as evidence and avoid spurious ones among retrieved results. The model architecture that uses concatenated multiple contexts in the decoding phase, *i.e.*, Fusion-in-Decoder, demonstrates promising performance but generates incorrect outputs from seemingly plausible contexts. To address this problem, we propose the ***M**ulti-**G**ranularity guided **F**usion-**i**n-**D**ecoder (**MGFiD**)*, discerning evidence across multiple levels of granularity. Based on multi-task learning, MGFiD harmonizes passage re-ranking with sentence classification. It aggregates evident sentences into an *anchor vector* that instructs the decoder. Additionally, it improves decoding efficiency by reusing the results of passage re-ranking for *passage pruning*. Through our experiments, MGFiD outperforms existing models on the Natural Questions (NQ) and TriviaQA (TQA) datasets, highlighting the benefits of its multi-granularity solution.
pdf
bib
abs
From Reading to Compressing: Exploring the Multi-document Reader for Prompt Compression
Eunseong Choi
|
Sunkyung Lee
|
Minjin Choi
|
Jun Park
|
Jongwuk Lee
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) have achieved significant performance gains using advanced prompting techniques over various tasks. However, the increasing length of prompts leads to high computational costs and often obscures crucial information. Prompt compression has been proposed to alleviate these issues, but it faces challenges in (i) capturing the global context and (ii) training the compressor effectively. To tackle these challenges, we introduce a novel prompt compression method, namely Reading To Compressing (R2C), utilizing the Fusion-in-Decoder (FiD) architecture to identify the important information in the prompt. Specifically, the cross-attention scores of the FiD are used to discern essential chunks and sentences from the prompt. R2C effectively captures the global context without compromising semantic consistency while detouring the necessity of pseudo-labels for training the compressor. Empirical results show that R2C retains key contexts, enhancing the LLM performance by 6% in out-of-domain evaluations while reducing the prompt length by 80%.
2021
pdf
bib
abs
MelBERT: Metaphor Detection via Contextualized Late Interaction using Metaphorical Identification Theories
Minjin Choi
|
Sunkyung Lee
|
Eunseong Choi
|
Heesoo Park
|
Junhyuk Lee
|
Dongwon Lee
|
Jongwuk Lee
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Automated metaphor detection is a challenging task to identify the metaphorical expression of words in a sentence. To tackle this problem, we adopt pre-trained contextualized models, e.g., BERT and RoBERTa. To this end, we propose a novel metaphor detection model, namely metaphor-aware late interaction over BERT (MelBERT). Our model not only leverages contextualized word representation but also benefits from linguistic metaphor identification theories to detect whether the target word is metaphorical. Our empirical results demonstrate that MelBERT outperforms several strong baselines on four benchmark datasets, i.e., VUA-18, VUA-20, MOH-X, and TroFi.