2025
pdf
bib
abs
Unveiling the Response of Large Vision-Language Models to Visually Absent Tokens
Sohee Kim
|
Soohyun Ryu
|
Joonhyung Park
|
Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Vision-Language Models (LVLMs) generate contextually relevant responses by jointly interpreting visual and textual inputs. However, our finding reveals they often mistakenly perceive text inputs lacking visual evidence as being part of the image, leading to erroneous responses. In light of this finding, we probe whether LVLMs possess an internal capability to determine if textual concepts are grounded in the image, and discover a specific subset of Feed-Forward Network (FFN) neurons, termed Visual Absence-aware (VA) neurons, that consistently signal the visual absence through a distinctive activation pattern. Leveraging these patterns, we develop a detection module that systematically classifies whether an input token is visually grounded. Guided by its prediction, we propose a method to refine the outputs by reinterpreting question prompts or replacing the detected absent tokens during generation. Extensive experiments show that our method effectively mitigates the models’ tendency to falsely presume the visual presence of text input and its generality across various LVLMs.
pdf
bib
abs
Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation
Seungseop Lim
|
Gibaeg Kim
|
Wooseok Han
|
Jean Seo
|
Hyunkyung Lee
|
Jaehyo Yoo
|
Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
pdf
bib
abs
Taxonomy of Comprehensive Safety for Clinical Agents
Jean Seo
|
Hyunkyung Lee
|
Gibaeg Kim
|
Wooseok Han
|
Jaehyo Yoo
|
Seungseop Lim
|
Kihun Shin
|
Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods—such as guardrails and tool-calling—often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS(Taxonomy of Comprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS covers a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our taxonomy, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal valuable insights about train data distribution and pretrained knowledge of base models.
pdf
bib
abs
LRQ: Optimizing Post-Training Quantization for Large Language Models by Learning Low-Rank Weight-Scaling Matrices
Jung Hyun Lee
|
Jeonghoon Kim
|
June Yong Yang
|
Se Jung Kwon
|
Eunho Yang
|
Kang Min Yoo
|
Dongsoo Lee
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
With the commercialization of large language models (LLMs), weight-activation quantization has emerged to compress and accelerate LLMs, achieving high throughput while reducing inference costs. However, existing post-training quantization (PTQ) techniques for quantizing weights and activations of LLMs still suffer from non-negligible accuracy drops, especially on massive multitask language understanding. To address this issue, we propose Low-Rank Quantization (LRQ) - a simple yet effective post-training weight quantization method for LLMs that reconstructs the outputs of an intermediate Transformer block by leveraging low-rank weight-scaling matrices, replacing the conventional full weight-scaling matrices that entail as many learnable scales as their associated weights. Thanks to parameter sharing via low-rank structure, LRQ only needs to learn significantly fewer parameters while enabling the individual scaling of weights, thus boosting the generalization capability of quantized LLMs. We show the superiority of LRQ over prior LLM PTQ works under (i) 8-bit weight and per-tensor activation quantization, (ii) 4-bit weight and 8-bit per-token activation quantization, and (iii) low-bit weight-only quantization schemes. Our code is available at Software.
2024
pdf
bib
abs
PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Gyeongman Kim
|
Doohyuk Jang
|
Eunho Yang
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher’s parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
2022
pdf
bib
abs
Does it Really Generalize Well on Unseen Data? Systematic Evaluation of Relational Triple Extraction Methods
Juhyuk Lee
|
Min-Joong Lee
|
June Yong Yang
|
Eunho Yang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
The ability to extract entities and their relations from unstructured text is essential for the automated maintenance of large-scale knowledge graphs. To keep a knowledge graph up-to-date, an extractor needs not only the ability to recall the triples it encountered during training, but also the ability to extract the new triples from the context that it has never seen before. In this paper, we show that although existing extraction models are able to easily memorize and recall already seen triples, they cannot generalize effectively for unseen triples. This alarming observation was previously unknown due to the composition of the test sets of the go-to benchmark datasets, which turns out to contain only 2% unseen data, rendering them incapable to measure the generalization performance. To separately measure the generalization performance from the memorization performance, we emphasize unseen data by rearranging datasets, sifting out training instances, or augmenting test sets. In addition to that, we present a simple yet effective augmentation technique to promote generalization of existing extraction models, and experimentally confirm that the proposed method can significantly increase the generalization performance of existing models.
2021
pdf
bib
abs
Distilling Linguistic Context for Language Model Compression
Geondo Park
|
Gyeongman Kim
|
Eunho Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
A computationally expensive and memory intensive neural network lies behind the recent success of language representation learning. Knowledge distillation, a major technique for deploying such a vast language model in resource-scarce environments, transfers the knowledge on individual word representations learned without restrictions. In this paper, inspired by the recent observations that language representations are relatively positioned and have more semantic knowledge as a whole, we present a new knowledge distillation objective for language representation learning that transfers the contextual knowledge via two types of relationships across representations: Word Relation and Layer Transforming Relation. Unlike other recent distillation techniques for the language models, our contextual distillation does not have any restrictions on architectural changes between teacher and student. We validate the effectiveness of our method on challenging benchmarks of language understanding tasks, not only in architectures of various sizes but also in combination with DynaBERT, the recently proposed adaptive size pruning method.