Erin MacMurray van Liemt

Also published as: Erin MacMurray van Liemt


2025

pdf bib
Improving Neutral Point-of-View Generation with Data- and Parameter-Efficient RL
Jessica Hoffmann | Christiane Ahlheim | Zac Yu | Aria Walfrand | Jarvis Jin | Marie Tano | Ahmad Beirami | Erin MacMurray van Liemt | Nithum Thain | Hakim Sidahmed | Lucas Dixon
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The paper shows that parameter-efficient reinforcement learning (PE-RL) is a highly effective training regime to improve large language models’ (LLMs) ability to answer queries on sensitive topics with a Neutral Point of View (NPOV), i.e. to provide significantly more informative, diverse and impartial answers. This is shown by evaluating PE-RL and multiple strong baselines—including LoRA finetuning (strongest baseline), SFT and RLHF. PE-RL not only improves on overall NPOV quality compared to the strongest baseline (97.06% 99.08%), but also scores much higher on features linguists identify as key to separating good answers from the best answers (60.25% 85.21% for presence of supportive details, 68.74% 91.43% for absence of oversimplification). A qualitative analysis corroborates this. Finally, our evaluation finds no statistical differences between results on topics that appear in the training dataset and those on separated evaluation topics, which provides strong evidence that our approach to training PE-RL exhibits very effective out of topic generalization. To enable the study, and enable further future studies we also release the dataset, SHQ-NPOV, and provide a methodology to create such datasets through iterative rounds of human peer-critique and annotator training.

2024

pdf bib
Detecting Hallucination and Coverage Errors in Retrieval Augmented Generation for Controversial Topics
Tyler A. Chang | Katrin Tomanek | Jessica Hoffmann | Nithum Thain | Erin MacMurray van Liemt | Kathleen Meier-Hellstern | Lucas Dixon
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We explore a strategy to handle controversial topics in LLM-based chatbots based on Wikipedia’s Neutral Point of View (NPOV) principle: acknowledge the absence of a single true answer and surface multiple perspectives. We frame this as retrieval augmented generation, where perspectives are retrieved from a knowledge base and the LLM is tasked with generating a fluent and faithful response from the given perspectives. As a starting point, we use a deterministic retrieval system and then focus on common LLM failure modes that arise during this approach to text generation, namely hallucination and coverage errors. We propose and evaluate three methods to detect such errors based on (1) word-overlap, (2) salience, and (3) LLM-based classifiers. Our results demonstrate that LLM-based classifiers, even when trained only on synthetic errors, achieve high error detection performance, with ROC AUC scores of 95.3% for hallucination and 90.5% for coverage error detection on unambiguous error cases. We show that when no training data is available, our other methods still yield good results on hallucination (84.0%) and coverage error (85.2%) detection.