Regulatory agencies often operate with limited resources and rely on tips from the public to identify potential violations. However, processing these tips at scale presents significant operational challenges, as agencies must correctly identify and route relevant tips to the appropriate enforcement divisions. Through a case study, we demonstrate how advances in large language models can be utilized to support overburdened agencies with limited capacities. In partnership with the U.S. Environmental Protection Agency, we leverage previously unstudied citizen tips data from their “Report a Violation” system to develop an LLM-assisted pipeline for tip routing. Our approach filters out 80.5% of irrelevant tips and increases overall routing accuracy from 31.8% to 82.4% compared to the current routing system. At a time of increased focus on government efficiencies, our approach provides a constructive path forward by using technology to empower civil servants.
Human trafficking is a worldwide crisis. Traffickers exploit their victims by anonymously offering sexual services through online advertisements. These ads often contain clues that law enforcement can use to separate out potential trafficking cases from volunteer sex advertisements. The problem is that the sheer volume of ads is too overwhelming for manual processing. Ideally, a centralized semi-automated tool can be used to assist law enforcement agencies with this task. Here, we present an approach using natural language processing to identify trafficking ads on these websites. We propose a classifier by integrating multiple text feature sets, including the publicly available pre-trained textual language model Bi-directional Encoder Representation from transformers (BERT). In this paper, we demonstrate that a classifier using this composite feature set has significantly better performance compared to any single feature set alone.