DongJin Jeong
2025
End-to-End Multilingual Automatic Dubbing via Duration-based Translation with Large Language Models
Hyun-Sik Won
|
DongJin Jeong
|
Hyunkyu Choi
|
Jinwon Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Automatic dubbing (AD) aims to replace the original speech in a video with translated speech that maintains precise temporal alignment (isochrony). Achieving natural synchronization between dubbed speech and visual content remains challenging due to variations in speech durations across languages. To address this, we propose an end-to-end AD framework that leverages large language models (LLMs) to integrate translation and timing control seamlessly. At the core of our framework lies Duration-based Translation (DT), a method that dynamically predicts the optimal phoneme count based on source speech duration and iteratively adjusts the translation length accordingly. Our experiments on English, Spanish, and Korean language pairs demonstrate that our approach substantially improves speech overlap—achieving up to 24% relative gains compared to translations without explicit length constraints—while maintaining competitive translation quality measured by COMET scores. Furthermore, our framework does not require language-specific tuning, ensuring practicality for multilingual dubbing scenarios.
2023
Conversational Emotion-Cause Pair Extraction with Guided Mixture of Experts
DongJin Jeong
|
JinYeong Bak
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Emotion-Cause Pair Extraction (ECPE) task aims to pair all emotions and corresponding causes in documents.ECPE is an important task for developing human-like responses. However, previous ECPE research is conducted based on news articles, which has different characteristics compared to dialogues. To address this issue, we propose a Pair-Relationship Guided Mixture-of-Experts (PRG-MoE) model, which considers dialogue features (e.g., speaker information).PRG-MoE automatically learns relationship between utterances and advises a gating network to incorporate dialogue features in the evaluation, yielding substantial performance improvement. We employ a new ECPE dataset, which is an English dialogue dataset, with more emotion-cause pairs in documents than news articles. We also propose Cause Type Classification that classifies emotion-cause pairs according to the types of the cause of a detected emotion. For reproducing the results, we make available all our code and data.