Diogo Tavares


2025

pdf bib
Language Models Can be Efficiently Steered via Minimal Embedding Layer Transformations
Diogo Tavares | David Semedo | Alexander Rudnicky | Joao Magalhaes
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) are increasingly costly to fine-tune due to their size, with embedding layers alone accounting for up to 20% of model parameters. While Parameter-Efficient Fine-Tuning (PEFT) methods exist, they largely overlook the embedding layer. In this paper, we introduce TinyTE, a novel PEFT approach that steers model behavior via minimal translational transformations in the embedding space. TinyTE modifies input embeddings without altering hidden layers, achieving competitive performance while requiring approximately 0.0001% of the parameters needed for full fine-tuning. Experiments across architectures provide a new lens for understanding the relationship between input representations and model behavior—revealing them to be more flexible at their foundation than previously thought.

2024

pdf bib
Plan-Grounded Large Language Models for Dual Goal Conversational Settings
Diogo Glória-Silva | Rafael Ferreira | Diogo Tavares | David Semedo | Joao Magalhaes
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Training Large Language Models (LLMs) to follow user instructions has shown to supply the LLM with ample capacity to converse fluently while being aligned with humans. Yet, it is not completely clear how an LLM can lead a plan-grounded conversation in mixed-initiative settings where instructions flow in both directions of the conversation, i.e. both the LLM and the user provide instructions to one another. In this paper, we tackle a dual goal mixed-initiative conversational setting where the LLM not only grounds the conversation on an arbitrary plan but also seeks to satisfy both a procedural plan and user instructions. The LLM is then responsible for guiding the user through the plan and, at the same time, adapting to new circumstances, answering questions, and activating safety guardrails when needed. We propose a novel LLM that grounds the dialogue on a procedural plan, can take the dialogue initiative, and enforces guardrails on the system’s behavior, while also improving the LLM’s responses to unexpected user behavior. Experiments in controlled settings and with real users show that the best-performing model, which we call PlanLLM, achieves a 2.1x improvement over a strong baseline. Moreover, experiments also show good generalization to unseen domains.