Devleena Das


2025

pdf bib
Recover-LoRA: Data-Free Accuracy Recovery of Degraded Language Models via Low-Rank Adaptation
Devleena Das | Rajeev Patwari | Ashish Sirasao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Inference optimizations such as quantization, pruning, format and datatype conversion, model export, and serialization can lead to functional degradations in language model task performance. While most efforts on performance recovery for deployment focus on robust quantization techniques, we focus on recovering model accuracies from any sources that degrade model weights, such as improper model serialization. In this work, we propose Recover-LoRA, a lightweight and dataset agnostic method to recover accuracy in degraded models. Recover-LoRA uses synthetic data and logit distillation to learn LoRA adapters on selective layers that facilitate aligning the degraded model to its full precision model. We investigate the utility of Recover-LoRA across a diverse set of small language models (SLMs), including models with varying attention architectures, multi-head attention (MHA) and group-query attention (GQA), as well as several evaluation datasets. Our results show that Recover-LoRA recovers model accuracies by 5-17% on MHA and GQA SLMs.

2024

pdf bib
DEFT-UCS: Data Efficient Fine-Tuning for Pre-Trained Language Models via Unsupervised Core-Set Selection for Text-Editing
Devleena Das | Vivek Khetan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent advances have led to the availability of many pre-trained language models (PLMs); however, a question that remains is how much data is truly needed to fine-tune PLMs for downstream tasks? In this work, we introduce DEFT-UCS, a data-efficient fine-tuning framework that leverages unsupervised core-set selection to identify a smaller, representative dataset to fine-tune PLMs for text-generation needed for text editing tasks such as simplification, grammar correction, clarity, etc. We examine the efficacy of DEFT-UCS across multiple text-editing tasks, and compare to the state-of-the art text-editing model, CoEDIT. Our results demonstrate that DEFT-UCS models are just as accurate as CoEDIT, across eight different datasets consisting of six different editing tasks, while finetuned on 70% less data.