Multimodal Large Language Models (MLLMs) trained on massive data may memorize sensitive personal information and photos, posing serious privacy risks. To mitigate this, MLLM unlearning methods are proposed, which fine-tune MLLMs to reduce the “forget” sensitive information. However, it remains unclear whether the knowledge has been truly forgotten or just hidden in the model. Therefore, we propose to study a novel problem of LLM unlearning attack, which aims to recover the unlearned knowledge of an unlearned LLM. To achieve the goal, we propose a novel framework Stealthy Unlearning Attack (SUA) framework that learns a universal noise pattern. When applied to input images, this noise can trigger the model to reveal unlearned content. While pixel-level perturbations may be visually subtle, they can be detected in the semantic embedding space, making such attacks vulnerable to potential defenses. To improve stealthiness, we introduce an embedding alignment loss that minimizes the difference between the perturbed and denoised image embeddings, ensuring the attack is semantically unnoticeable. Experimental results show that SUA can effectively recover unlearned information from MLLMs. Furthermore, the learned noise generalizes well: a single perturbation trained on a subset of samples can reveal forgotten content in unseen images. This indicates that knowledge reappearance is not an occasional failure, but a consistent behavior.
The rapid advancement of Large Language Models (LLMs) has enabled the generation of highly realistic synthetic data. We identify a new vulnerability, LLMs generating convincing career trajectories in fake resumes and explore effective detection methods. To address this challenge, we construct a dataset of machine-generated career trajectories using LLMs and various methods, and demonstrate that conventional text-based detectors perform poorly on structured career data. We propose CareerScape, a novel heterogeneous, hierarchical multi-layer graph framework that models career entities and their relations in a unified global graph built from genuine resumes. Unlike conventional classifiers that treat each instance independently, CareerScape employs a structure-aware framework that augments user-specific subgraphs with trusted neighborhood information from a global graph, enabling the model to capture both global structural patterns and local inconsistencies indicative of synthetic career paths. Experimental results show that CareerScape outperforms state-of-the-art baselines by 5.8-85.0% relatively, highlighting the importance of structure-aware detection for machine-generated content. Our codebase is available at https://github.com/mickeymst/careerscape.
Fact-checking the truthfulness of claims usually requires reasoning over multiple evidence sentences. Oftentimes, evidence sentences may not be always self-contained, and may require additional contexts and references from elsewhere to understand coreferential expressions, acronyms, and the scope of a reported finding. For example, evidence sentences from an academic paper may need contextual sentences in the paper and descriptions in its cited papers to determine the scope of a research discovery. However, most fact-checking models mainly focus on the reasoning within evidence sentences, and ignore the auxiliary contexts and references. To address this problem, we propose a novel method, Context- and Reference-augmented Reasoning and Prompting. For evidence reasoning, we construct a three-layer evidence graph with evidence, context, and reference layers. We design intra- and cross-layer reasoning to integrate three graph layers into a unified evidence embedding. For verdict prediction, we design evidence-conditioned prompt encoder, which produces unique prompt embeddings for each claim. These evidence-conditioned prompt embeddings and claims are unified for fact-checking. Experiments verify the strength of our model.