Dana Arad


2025

pdf bib
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
Yonatan Belinkov | Aaron Mueller | Najoung Kim | Hosein Mohebbi | Hanjie Chen | Dana Arad | Gabriele Sarti
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

pdf bib
BlackboxNLP-2025 MIB Shared Task: Improving Circuit Faithfulness via Better Edge Selection
Yaniv Nikankin | Dana Arad | Itay Itzhak | Anja Reusch | Adi Simhi | Gal Kesten | Yonatan Belinkov
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

One of the main challenges in mechanistic interpretability is circuit discovery – determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models.

pdf bib
Findings of the BlackboxNLP 2025 Shared Task: Localizing Circuits and Causal Variables in Language Models
Dana Arad | Yonatan Belinkov | Hanjie Chen | Najoung Kim | Hosein Mohebbi | Aaron Mueller | Gabriele Sarti | Martin Tutek
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Mechanistic interpretability (MI) seeks to uncover how language models (LMs) implement specific behaviors, yet measuring progress in MI remains challenging. The recently released Mechanistic Interpretability Benchmark (MIB) provides a standardized framework for evaluating circuit and causal variable localization. Building on this foundation, the BlackboxNLP 2025 Shared Task extends MIB into a community-wide reproducible comparison of MI techniques. The shared task features two tracks: circuit localization, which assesses methods that identify causally influential components and interactions driving model behavior, and causal variable localization, which evaluates approaches that map activations into interpretable features. With three teams spanning eight different methods, participants achieved notable gains in circuit localization using ensemble and regularization strategies for circuit discovery. With one team spanning two methods, participants achieved significant gains in causal variable localization using low-dimensional and non-linear projections to featurize activation vectors. The MIB leaderboard remains open; we encourage continued work in this standard evaluation framework to measure progress in MI research going forward.

pdf bib
SAEs Are Good for Steering – If You Select the Right Features
Dana Arad | Aaron Mueller | Yonatan Belinkov
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model’s latent space. This enables useful applications, such as fine-grained steering of model outputs without requiring labeled data. Current steering methods identify SAE features to target by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model’s output. In this work we draw a distinction between two types of features: input features, which mainly capture patterns in the model’s input, and output features, those that have a human-understandable effect on the model’s output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: After filtering out features with low output scores, steering with SAEs results in a 2–3x improvement, matching the performance of existing supervised methods.

2024

pdf bib
Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines
Michael Toker | Hadas Orgad | Mor Ventura | Dana Arad | Yonatan Belinkov
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts require further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines.

pdf bib
ReFACT: Updating Text-to-Image Models by Editing the Text Encoder
Dana Arad | Hadas Orgad | Yonatan Belinkov
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Our world is marked by unprecedented technological, global, and socio-political transformations, posing a significant challenge to textto-image generative models. These models encode factual associations within their parameters that can quickly become outdated, diminishing their utility for end-users. To that end, we introduce ReFACT, a novel approach for editing factual associations in text-to-image models without relaying on explicit input from end-users or costly re-training. ReFACT updates the weights of a specific layer in the text encoder, modifying only a tiny portion of the model’s parameters and leaving the rest of the model unaffected.We empirically evaluate ReFACT on an existing benchmark, alongside a newly curated dataset.Compared to other methods, ReFACT achieves superior performance in both generalization to related concepts and preservation of unrelated concepts.Furthermore, ReFACT maintains image generation quality, making it a practical tool for updating and correcting factual information in text-to-image models.