Disinformation is among the top risks of generative artificial intelligence (AI) misuse. Global adoption of generative AI necessitates red-teaming evaluations (i.e., systematic adversarial probing) that are robust across diverse languages and cultures, but red-teaming datasets are commonly US- and English-centric. To address this gap, we propose ”anecdoctoring”, a novel red-teaming approach that automatically generates adversarial prompts across languages and cultures. We collect misinformation claims from fact-checking websites in three languages (English, Spanish, and Hindi) and two geographies (US and India). We then cluster individual claims into broader narratives and characterize the resulting clusters with knowledge graphs, with which we augment an attacker LLM. Our method produces higher attack success rates and offers interpretability benefits relative to few-shot prompting. Results underscore the need for disinformation mitigations that scale globally and are grounded in real-world adversarial misuse.
Representational harms are widely recognized among fairness-related harms caused by generative language systems. However, their definitions are commonly under-specified. We make a theoretical contribution to the specification of representational harms by introducing a framework, grounded in speech act theory (Austin 1962), that conceptualizes representational harms caused by generative language systems as the perlocutionary effects (i.e., real-world impacts) of particular types of illocutionary acts (i.e., system behaviors). Building on this argument and drawing on relevant literature from linguistic anthropology and sociolinguistics, we provide new definitions of stereotyping, demeaning, and erasure. We then use our framework to develop a granular taxonomy of illocutionary acts that cause representational harms, going beyond the high-level taxonomies presented in previous work. We also discuss the ways that our framework and taxonomy can support the development of valid measurement instruments. Finally, we demonstrate the utility of our framework and taxonomy via a case study that engages with recent conceptual debates about what constitutes a representational harm and how such harms should be measured.
It is critical to measure and mitigate fairness-related harms caused by AI text generation systems, including stereotyping and demeaning harms. To that end, we introduce FairPrism, a dataset of 5,000 examples of AI-generated English text with detailed human annotations covering a diverse set of harms relating to gender and sexuality. FairPrism aims to address several limitations of existing datasets for measuring and mitigating fairness-related harms, including improved transparency, clearer specification of dataset coverage, and accounting for annotator disagreement and harms that are context-dependent. FairPrism’s annotations include the extent of stereotyping and demeaning harms, the demographic groups targeted, and appropriateness for different applications. The annotations also include specific harms that occur in interactive contexts and harms that raise normative concerns when the “speaker” is an AI system. Due to its precision and granularity, FairPrism can be used to diagnose (1) the types of fairness-related harms that AI text generation systems cause, and (2) the potential limitations of mitigation methods, both of which we illustrate through case studies. Finally, the process we followed to develop FairPrism offers a recipe for building improved datasets for measuring and mitigating harms caused by AI systems.