Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: legal fact prediction (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to make predictions in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP.
This paper explores the utilization of LLMs for data preprocessing (DP), a crucial step in the data mining pipeline that transforms raw data into a clean format. We instruction-tune local LLMs as universal DP task solvers that operate on a local, single, and low-priced GPU, ensuring data security and enabling further customization. We select a collection of datasets across four representative DP tasks and construct instruction data using data configuration, knowledge injection, and reasoning data distillation techniques tailored to DP. By tuning Mistral-7B, Llama 3-8B, and OpenOrca-Platypus2-13B, our models, Jellyfish-7B/8B/13B, deliver competitiveness compared to GPT-3.5/4 models and strong generalizability to unseen tasks while barely compromising the base models’ abilities in NLP tasks. Meanwhile, Jellyfish offers enhanced reasoning capabilities compared to GPT-3.5. Our models are available at: https://huggingface.co/NECOUDBFM/JellyfishOur instruction dataset is available at: https://huggingface.co/datasets/NECOUDBFM/Jellyfish-Instruct
Large Language Models (LLMs) have increasingly been utilized in social simulations, where they are often guided by carefully crafted instructions to stably exhibit human-like behaviors during simulations. Nevertheless, we doubt the necessity of shaping agents’ behaviors for accurate social simulations. Instead, this paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions. We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation, findings that align closely with human behavioral data. This approach not only aids the computational social science community in bridging the gap between simulations and real-world dynamics but also offers the AI community a novel method to assess LLMs’ capability of deliberate reasoning.Our source code is available at https://github.com/wuzengqing001225/SABM_ShallWeTeamUp