Chia-Wei Tang
2025
Flexible-length Text Infilling for Discrete Diffusion Models
Andrew Zhang
|
Anushka Sivakumar
|
Chia-Wei Tang
|
Chris Thomas
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce DDOT (Discrete Diffusion with Optimal Transport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
2024
MetaSumPerceiver: Multimodal Multi-Document Evidence Summarization for Fact-Checking
Ting-Chih Chen
|
Chia-Wei Tang
|
Chris Thomas
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Fact-checking real-world claims often requires reviewing multiple multimodal documents in order to assess the claim’s truthfulness, a highly laborious and time-consuming task. In this paper, we present a summarization model crafted to generate claim-specific summaries useful for fact-checking from multimodal multi-document datasets. The model takes inputs in the form of documents, images, and a claim, with the objective of assisting in fact-checking tasks. We introduce a dynamic perceiver-based model that is able to handle inputs from multiple modalities of arbitrary lengths. To train our model, we leverage a novel reinforcement learning-based entailment objective in order to generate summaries that provide evidence distinguishing between different truthfulness labels. To assess the efficacy of our approach, we conduct experiments on both an existing benchmark as well as a new dataset of multi-document claims which we contribute. Our approach outperforms the SOTA approach by 4.6% in the claim verification task on the MOCHEG dataset and demonstrates strong performance on our new Multi-News-Fact-Checking dataset.
M3D: MultiModal MultiDocument Fine-Grained Inconsistency Detection
Chia-Wei Tang
|
Ting-Chih Chen
|
Kiet A. Nguyen
|
Kazi Sajeed Mehrab
|
Alvi Md Ishmam
|
Chris Thomas
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Fact-checking claims is a highly laborious task that involves understanding how each factual assertion within the claim relates to a set of trusted source materials. Existing approaches make sample-level predictions but fail to identify the specific aspects of the claim that are troublesome and the specific evidence relied upon. In this paper, we introduce a method and new benchmark for this challenging task. Our method predicts the fine-grained logical relationship of each aspect of the claim from a set of multimodal documents, which include text, image(s), video(s), and audio(s). We also introduce a new benchmark (M3DC) of claims requiring multimodal multidocument reasoning, which we construct using a novel claim synthesis technique. Experiments show that our approach outperforms other models on this challenging task on two benchmarks while providing finer-grained predictions, explanations, and evidence.
Search
Fix author
Co-authors
- Chris Thomas 3
- Ting-Chih Chen 2
- Alvi Md Ishmam 1
- Kazi Sajeed Mehrab 1
- Kiet A. Nguyen 1
- show all...