Chang Xu


2025

pdf bib
ThoughtProbe: Classifier-Guided LLM Thought Space Exploration via Probing Representations
Zijian Wang | Chang Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This paper introduces ThoughtProbe, a novel inference-time framework that leverages the hidden reasoning features of Large Language Models (LLMs) to improve their reasoning performance. Unlike previous works that manipulate the hidden representations to steer LLM generation, we harness them as discriminative signals to guide the tree-structured response space exploration. In each node expansion, a classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by prioritizing higher score candidates for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We then propose a branch-aggregation method that marginalizes over all supporting branches by aggregating their CoT scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework’s comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.

pdf bib
Does Acceleration Cause Hidden Instability in Vision Language Models? Uncovering Instance-Level Divergence Through a Large-Scale Empirical Study
Yizheng Sun | Hao Li | Chang Xu | Hongpeng Zhou | Chenghua Lin | Riza Batista-Navarro | Jingyuan Sun
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Vision-Language Models (VLMs) are powerful yet computationally intensive for widespread practical deployments. To address such challenge without costly re-training, post-training acceleration techniques like quantization and token reduction are extensively explored. However, current acceleration evaluations primarily target minimal overall performance degradation, overlooking a crucial question: does the accelerated model still give the same answers to the same questions as it did before acceleration? This is vital for stability-centered industrial applications where consistently correct answers for specific, known situations are paramount, such as in AI-based disease diagnosis. We systematically investigate this for accelerated VLMs, testing four leading models (LLaVA-1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL) with eight acceleration methods on ten multi-modal benchmarks. Our findings are stark: despite minimal aggregate performance drops, accelerated models changed original answers up to 20% of the time. Critically, up to 6.5% of these changes converted correct answers to incorrect. Input perturbations magnified these inconsistencies, and the trend is confirmed by case studies with the medical VLM LLaVA-Med. This research reveals a significant oversight in VLM acceleration, stressing an urgent need for instance-level stability checks to ensure trustworthy real-world deployment.

pdf bib
CollagePrompt: A Benchmark for Budget-Friendly Visual Recognition with GPT-4V
Siyu Xu | Yunke Wang | Daochang Liu | Bo Du | Chang Xu
Findings of the Association for Computational Linguistics: NAACL 2025

2024

pdf bib
Locating and Extracting Relational Concepts in Large Language Models
Zijian Wang | Britney Whyte | Chang Xu
Findings of the Association for Computational Linguistics: ACL 2024

Relational concepts are indeed foundational to the structure of knowledge representation, as they facilitate the association between various entity concepts, allowing us to express and comprehend complex world knowledge.By expressing relational concepts in natural language prompts, people can effortlessly interact with large language models (LLMs) and recall desired factual knowledge. However, the process of knowledge recall lacks interpretability, and representations of relational concepts within LLMs remain unknown to us. In this paper, we identify hidden states that can express entity and relational concepts through causal mediation analysis in fact recall processes. Our finding reveals that at the last token position of the input prompt, there are hidden states that solely express the causal effects of relational concepts. Based on this finding, we assume that these hidden states can be treated as relational representations and we can successfully extract them from LLMs. The experimental results demonstrate high credibility of the relational representations: they can be flexibly transplanted into other fact recall processes, and can also be used as robust entity connectors. Moreover, we also show that the relational representations exhibit significant potential for controllable fact recall through relation rewriting.

2021

pdf bib
Putting words into the system’s mouth: A targeted attack on neural machine translation using monolingual data poisoning
Jun Wang | Chang Xu | Francisco Guzmán | Ahmed El-Kishky | Yuqing Tang | Benjamin Rubinstein | Trevor Cohn
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
As Easy as 1, 2, 3: Behavioural Testing of NMT Systems for Numerical Translation
Jun Wang | Chang Xu | Francisco Guzmán | Ahmed El-Kishky | Benjamin Rubinstein | Trevor Cohn
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Mitigating Data Poisoning in Text Classification with Differential Privacy
Chang Xu | Jun Wang | Francisco Guzmán | Benjamin Rubinstein | Trevor Cohn
Findings of the Association for Computational Linguistics: EMNLP 2021

NLP models are vulnerable to data poisoning attacks. One type of attack can plant a backdoor in a model by injecting poisoned examples in training, causing the victim model to misclassify test instances which include a specific pattern. Although defences exist to counter these attacks, they are specific to an attack type or pattern. In this paper, we propose a generic defence mechanism by making the training process robust to poisoning attacks through gradient shaping methods, based on differentially private training. We show that our method is highly effective in mitigating, or even eliminating, poisoning attacks on text classification, with only a small cost in predictive accuracy.

2020

pdf bib
Assessing Social License to Operate from the Public Discourse on Social Media
Chang Xu | Cecile Paris | Ross Sparks | Surya Nepal | Keith VanderLinden
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track

Organisations are monitoring their Social License to Operate (SLO) with increasing regularity. SLO, the level of support organisations gain from the public, is typically assessed through surveys or focus groups, which require expensive manual efforts and yield quickly-outdated results. In this paper, we present SIRTA (Social Insight via Real-Time Text Analytics), a novel real-time text analytics system for assessing and monitoring organisations’ SLO levels by analysing the public discourse from social posts. To assess SLO levels, our insight is to extract and transform peoples’ stances towards an organisation into SLO levels. SIRTA achieves this by performing a chain of three text classification tasks, where it identifies task-relevant social posts, discovers key SLO risks discussed in the posts, and infers stances specific to the SLO risks. We leverage recent language understanding techniques (e.g., BERT) for building our classifiers. To monitor SLO levels over time, SIRTA employs quality control mechanisms to reliably identify SLO trends and variations of multiple organisations in a market. These are derived from the smoothed time series of their SLO levels based on exponentially-weighted moving average (EWMA) calculation. Our experimental results show that SIRTA is highly effective in distilling stances from social posts for SLO level assessment, and that the continuous monitoring of SLO levels afforded by SIRTA enables the early detection of critical SLO changes.

2019

pdf bib
Recognising Agreement and Disagreement between Stances with Reason Comparing Networks
Chang Xu | Cecile Paris | Surya Nepal | Ross Sparks
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We identify agreement and disagreement between utterances that express stances towards a topic of discussion. Existing methods focus mainly on conversational settings, where dialogic features are used for (dis)agreement inference. We extend this scope and seek to detect stance (dis)agreement in a broader setting, where independent stance-bearing utterances, which prevail in many stance corpora and real-world scenarios, are compared. To cope with such non-dialogic utterances, we find that the reasons uttered to back up a specific stance can help predict stance (dis)agreements. We propose a reason comparing network (RCN) to leverage reason information for stance comparison. Empirical results on a well-known stance corpus show that our method can discover useful reason information, enabling it to outperform several baselines in stance (dis)agreement detection.

2018

pdf bib
Cross-Target Stance Classification with Self-Attention Networks
Chang Xu | Cécile Paris | Surya Nepal | Ross Sparks
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In stance classification, the target on which the stance is made defines the boundary of the task, and a classifier is usually trained for prediction on the same target. In this work, we explore the potential for generalizing classifiers between different targets, and propose a neural model that can apply what has been learned from a source target to a destination target. We show that our model can find useful information shared between relevant targets which improves generalization in certain scenarios.