Mechanistic interpretation has greatly contributed to a more detailed understanding of generative language models, enabling significant progress in identifying structures that implement key behaviors through interactions between internal components. In contrast, interpretability in information retrieval (IR) remains relatively coarse-grained, and much is still unknown as to how IR models determine whether a document is relevant to a query. In this work, we address this gap by mechanistically analyzing how one commonly used model, a cross-encoder, estimates relevance. We find that the model extracts traditional relevance signals, such as term frequency and inverse document frequency, in early-to-middle layers. These concepts are then combined in later layers, similar to the well-known probabilistic ranking function, BM25. Overall, our analysis offers a more nuanced understanding of how IR models compute relevance. Isolating these components lays the groundwork for future interventions that could enhance transparency, mitigate safety risks, and improve scalability.
Are multimodal inputs necessary for grammar induction? Recent work has shown that multimodal training inputs can improve grammar induction. However, these improvements are based on comparisons to weak text-only baselines that were trained on relatively little textual data. To determine whether multimodal inputs are needed in regimes with large amounts of textual training data, we design a stronger text-only baseline, which we refer to as LC-PCFG. LC-PCFG is a C-PFCG that incorporates embeddings from text-only large language models (LLMs). We use a fixed grammar family to directly compare LC-PCFG to various multimodal grammar induction methods. We compare performance on four benchmark datasets. LC-PCFG provides an up to 17% relative improvement in Corpus-F1 compared to state-of-the-art multimodal grammar induction methods. LC-PCFG is also more computationally efficient, providing an up to 85% reduction in parameter count and 8.8× reduction in training time compared to multimodal approaches. These results suggest that multimodal inputs may not be necessary for grammar induction, and emphasize the importance of strong vision-free baselines for evaluating the benefit of multimodal approaches.
Representations from large language models (LLMs) are known to be dominated by a small subset of dimensions with exceedingly high variance. Previous works have argued that although ablating these outlier dimensions in LLM representations hurts downstream performance, outlier dimensions are detrimental to the representational quality of embeddings. In this study, we investigate how fine-tuning impacts outlier dimensions and show that 1) outlier dimensions that occur in pre-training persist in fine-tuned models and 2) a single outlier dimension can complete downstream tasks with a minimal error rate. Our results suggest that outlier dimensions can encode crucial task-specific knowledge and that the value of a representation in a single outlier dimension drives downstream model decisions.