In this paper, we design a signalling game-based emergent communication environment to generate state-of-the-art emergent languages in terms of similarity to human language. This is done with hyperparameter optimization, using XferBench as the objective function. XferBench quantifies the statistical similarity of emergent language to human language by measuring its suitability for deep transfer learning to human language. Additionally, we demonstrate the predictive power of entropy on the transfer learning performance of emergent language as well as corroborate previous results on the entropy-minimization properties of emergent communication systems. Finally, we report generalizations regarding what hyperparameters produce more realistic emergent languages, that is, ones which transfer better to human language.
We introduce CSAR, an algorithm for inducing morphemes from emergent language corpora of parallel utterances and meanings.It is a greedy algorithm that (1) weights morphemes based on mutual information between forms and meanings, (2) selects the highest-weighted pair, (3) removes it from the corpus, and (4) repeats the process to induce further morphemes (i.e., Count, Select, Ablate, Repeat).The effectiveness of CSAR is first validated on procedurally generated datasets and compared against baselines for related tasks.Second, we validate CSAR’s performance on human language data to show that the algorithm makes reasonable predictions in adjacent domains.Finally, we analyze a handful of emergent languages, quantifying linguistic characteristics like degree of synonymy and polysemy.
In this paper, we introduce a benchmark for evaluating the overall quality of emergent languages using data-driven methods. Specifically, we interpret the notion of the “quality” of an emergent language as its similarity to human language within a deep learning framework. We measure this by using the emergent language as pretraining data for a downstream NLP tasks in human language—the better the downstream performance, the better the emergent language. We implement this benchmark as an easy-to-use Python package that only requires a text file of utterances from the emergent language to be evaluated. Finally, we empirically test the benchmark’s validity using human, synthetic, and emergent language baselines.
Recent work in natural language processing (NLP) has focused on ethical challenges such as understanding and mitigating bias in data and algorithms; identifying objectionable content like hate speech, stereotypes and offensive language; and building frameworks for better system design and data handling practices. However, there has been little discussion about the ethical foundations that underlie these efforts. In this work, we study one ethical theory, namely deontological ethics, from the perspective of NLP. In particular, we focus on the generalization principle and the respect for autonomy through informed consent. We provide four case studies to demonstrate how these principles can be used with NLP systems. We also recommend directions to avoid the ethical issues in these systems.