Bihui Yu
2025
MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification
Linzhuang Sun
|
Hao Liang
|
Jingxuan Wei
|
Bihui Yu
|
Tianpeng Li
|
Fan Yang
|
Zenan Zhou
|
Wentao Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
According to the Test-Time Scaling, the integration of External Slow-Thinking with the Verify mechanism has been demonstrated to enhance multi-round reasoning in large language models (LLMs). However, in the multimodal (MM) domain, there is still a lack of a strong MM-Verifier. In this paper, we introduce MM-Verifier and MM-Reasoner to enhance multimodal reasoning through longer inference and more robust verification. First, we propose a two-step MM verification data synthesis method, which combines a simulation-based tree search with verification and uses rejection sampling to generate high-quality Chain-of-Thought (COT) data. This data is then used to fine-tune the verification model, MM-Verifier. Additionally, we present a more efficient method for synthesizing MMCOT data, bridging the gap between text-based and multimodal reasoning. The synthesized data is used to fine-tune MM-Reasoner. Our MM-Verifier outperforms all larger models on the MathCheck, MathVista, and MathVerse benchmarks. Moreover, MM-Reasoner demonstrates strong effectiveness and scalability, with performance improving as data size increases. Finally, our approach achieves strong performance when combining MM-Reasoner and MM-Verifier, reaching an accuracy of 65.3 on MathVista, surpassing GPT-4o (63.8) with 12 rollouts.
ChartMind: A Comprehensive Benchmark for Complex Real-world Multimodal Chart Question Answering
Jingxuan Wei
|
Nan Xu
|
Junnan Zhu
|
Haoyanni
|
Gaowei Wu
|
Qi Chen
|
Bihui Yu
|
Lei Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Chart question answering (CQA) has become a critical multimodal task for evaluating the reasoning capabilities of vision-language models. While early approaches have shown promising performance by focusing on visual features or leveraging large-scale pre-training, most existing evaluations rely on rigid output formats and objective metrics, thus ignoring the complex, real-world demands of practical chart analysis. In this paper, we introduce ChartMind, a new benchmark designed for complex CQA tasks in real-world settings. ChartMind covers seven task categories, incorporates multilingual contexts, supports open-domain textual outputs, and accommodates diverse chart formats, bridging the gap between real-world applications and traditional academic benchmarks. Furthermore, we propose a context-aware yet model-agnostic framework, ChartLLM, that focuses on extracting key contextual elements, reducing noise, and enhancing the reasoning accuracy of multimodal large language models. Extensive evaluations on ChartMind and three representative public benchmarks with 14 mainstream multimodal models show our framework significantly outperforms the previous three common CQA paradigms: instruction-following, OCR-enhanced, and chain-of-thought, highlighting the importance of flexible chart understanding for real-world CQA. These findings suggest new directions for developing more robust chart reasoning in future research.