Biao Wu


2025

pdf bib
PresentAgent: Multimodal Agent for Presentation Video Generation
Jingwei Shi | Zeyu Zhang | Biao Wu | Yanjie Liang | Meng Fang | Ling Chen | Yang Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document–presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats.

2024

pdf bib
I Learn Better If You Speak My Language: Understanding the Superior Performance of Fine-Tuning Large Language Models with LLM-Generated Responses
Xuan Ren | Biao Wu | Lingqiao Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This paper explores an intriguing observation: fine-tuning a large language model (LLM) with responses generated by a LLM often yields better results than using responses generated by humans, particularly in reasoning tasks. We conduct an in-depth investigation to understand why this occurs. Contrary to the common belief that these instances is due to the more detailed nature of LLM-generated content, our study identifies another contributing factor: an LLM is inherently more “familiar” with LLM generated responses. This familiarity is evidenced by lower perplexity before fine-tuning. We design a series of experiments to understand the impact of the “familiarity” and our conclusion reveals that this “familiarity” significantly impacts learning performance. Training with LLM-generated responses not only enhances performance but also helps maintain the model’s capabilities in other reasoning tasks after fine-tuning on a specific task.