Bahareh Sarrafzadeh


2025

pdf bib
Prototypical Human-AI Collaboration Behaviors from LLM-Assisted Writing in the Wild
Sheshera Mysore | Debarati Das | Hancheng Cao | Bahareh Sarrafzadeh
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

As large language models (LLMs) are used in complex writing workflows, users engage in multi-turn interactions to steer generations to better fit their needs. Rather than passively accepting output, users actively refine, explore, and co-construct text. We conduct a large scale analysis of this collaborative behavior for users engaged in writing tasks in the wild with two popular AI assistants, Bing Copilot and WildChat. Our analysis goes beyond simple task classification or satisfaction estimation common in prior work and instead characterizes how users interact with LLMs through the course of a session. We identify prototypical behaviors in how users interact with LLMs in prompts following their original request. We refer to these as Prototypical Human AI Collaboration Behaviors (PATHs) and find that a small group of PATHs explain a majority of the variation seen in user-LLM interaction. These PATHs span users revising intents, exploring texts, posing questions, adjusting style or injecting new content. Next, we find statistically significant correlations between specific writing intents and PATHs, revealing how users’ intents shape their collaboration behaviors. We conclude by discussing the implications of our findings on LLM alignment.

2024

pdf bib
Pearl: Personalizing Large Language Model Writing Assistants with Generation-Calibrated Retrievers
Sheshera Mysore | Zhuoran Lu | Mengting Wan | Longqi Yang | Bahareh Sarrafzadeh | Steve Menezes | Tina Baghaee | Emmanuel Barajas Gonzalez | Jennifer Neville | Tara Safavi
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a Domain, Application, Group, or Individual (CustomNLP4U)

Powerful large language models have facilitated the development of writing assistants that promise to significantly improve the quality and efficiency of composition and communication. However, a barrier to effective assistance is the lack of personalization in LLM outputs to the author’s communication style, specialized knowledge, and values. In this paper, we address this challenge by proposing Pearl, a LLM writing assistant personalized with a retriever that is trained to be generation-calibrated for personalization. Generation calibration ensures that our retriever selects historic user authored documents to augment an LLM prompt such that they are likely to help an LLM generation better adhere to a users’ preferences. We propose two key novelties for training such a retriever: (1) A training data selection method that identifies user requests likely to benefit from personalization and documents that provide that benefit; and (2) A scale-calibrating KL-divergence objective that ensures that our retriever scores remain proportional to the downstream generation quality from using the document for personalized generation. In a series of holistic evaluations, we demonstrate the effectiveness of Pearl in generating long-form texts on multiple social media datasets. Finally, we demonstrate how a generation-calibrated retriever can double as a performance predictor – detecting low quality retrieval, and improving potentially under-performing outputs via revision with LLMs.