Atharva Mehta


2025

pdf bib
Women, Infamous, and Exotic Beings: A Comparative Study of Honorific Usages in Wikipedia and LLMs for Bengali and Hindi
Sourabrata Mukherjee | Atharva Mehta | Sougata Saha | Akhil Arora | Monojit Choudhury
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The obligatory use of third-person honorifics is a distinctive feature of several South Asian languages, encoding nuanced socio-pragmatic cues such as power, age, gender, fame, and social distance.In this work, (i) We present the first large-scale study of third-person honorific pronoun and verb usage across 10,000 Hindi and Bengali Wikipedia articles with annotations linked to key socio-demographic attributes of the subjects, including gender, age group, fame, and cultural origin.(ii) Our analysis uncovers systematic intra-language regularities but notable cross-linguistic differences: honorifics are more prevalent in Bengali than in Hindi, while non-honorifics dominate while referring to infamous, juvenile, and culturally “exotic” entities. Notably, in both languages, and more prominently in Hindi, men are more frequently addressed with honorifics than women.(iii) To examine whether large language models (LLMs) internalize similar socio-pragmatic norms, we probe six LLMs using controlled generation and translation tasks over 1,000 culturally balanced entities. We find that LLMs diverge from Wikipedia usage, exhibiting alternative preferences in honorific selection across tasks, languages, and socio-demographic attributes. These discrepancies highlight gaps in the socio-cultural alignment of LLMs and open new directions for studying how LLMs acquire, adapt, or distort social-linguistic norms. Our code and data are publicly available at https://github.com/souro/honorific-wiki-llm

pdf bib
Music for All: Representational Bias and Cross-Cultural Adaptability of Music Generation Models
Atharva Mehta | Shivam Chauhan | Amirbek Djanibekov | Atharva Kulkarni | Gus Xia | Monojit Choudhury
Findings of the Association for Computational Linguistics: NAACL 2025

The advent of Music-Language Models has greatly enhanced the automatic music generation capability of AI systems, but they are also limited in their coverage of the musical genres and cultures of the world. We present a study of the datasets and research papers for music generation and quantify the bias and under-representation of genres. We find that only 5.7% of the total hours of existing music datasets come from non-Western genres, which naturally leads to disparate performance of the models across genres.We then investigate the efficacy of Parameter-Efficient Fine-Tuning (PEFT) techniques in mitigating this bias. Our experiments with two popular models – MusicGen and Mustango, for two underrepresented non-Western music traditions – Hindustani Classical and Turkish Makam music, highlight the promises as well as the non-triviality of cross-genre adaptation of music through small datasets, implying the need for more equitable baseline music-language models that are designed for cross-cultural transfer learning.