Large Language Models (LLMs) are often quantized to lower precision to reduce the memory cost and latency in inference. However, quantization often degrades model performance, thus fine-tuning is required for various downstream tasks. Traditional fine-tuning methods such as stochastic gradient descent and Adam optimization require backpropagation, which is error-prone in the low-precision settings. To overcome these limitations, we propose the Quantized Zeroth-Order (QuZO) framework, specifically designed for fine-tuning LLMs through low-precision (e.g., 4- or 8-bit) forward passes. Our method avoids the low-precision straight-through estimator, which requires backward computation, and instead utilizes optimized stochastic rounding to mitigate increased bias. QuZO simplifies the training process, while achieving results comparable to first-order methods in FP8 and superior accuracy in INT8 and INT4 training. Experiments demonstrate that QuZO achieves competitive performance on classification, multi-choice, and generation tasks under low-bit training, including zero-shot reasoning tasks. Notably, QuZO incurs minimal overhead and reduces memory consumption by 2.94 ×–5.47 × compared to quantized first-order methods during LLaMA-7B fine-tuning.
Large language models have demonstrated exceptional capabilities across diverse tasks, but their fine-tuning demands significant memory, posing challenges for resource-constrained environments. Zeroth-order (ZO) optimization provides a memory-efficient alternative by eliminating the need for backpropagation. However, ZO optimization suffers from high gradient variance, and prior research has largely focused on single-task learning, leaving its application to multi-task learning unexplored. Multi-task learning is crucial for leveraging shared knowledge across tasks to improve generalization, yet it introduces unique challenges under ZO settings, such as amplified gradient variance and collinearity. In this paper, we present MaZO, the first framework specifically designed for multi-task LLM fine-tuning under ZO optimization. MaZO tackles these challenges at the parameter level through two key innovations: a weight importance metric to identify critical parameters and a multi-task weight update mask to selectively update these parameters, reducing the dimensionality of the parameter space and mitigating task conflicts. Experiments demonstrate that MaZO achieves state-of-the-art performance, surpassing even multi-task learning methods designed for first-order optimization.
Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal accuracy impact. However, existing methods often suffer from accuracy degradation without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level regional gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Moreover, despite updating weights with regional optimization, Wanda++ remains orthogonal to sparsity-aware fine-tuning, further reducing perplexity with LoRA in great extend. Our approach is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single H100 GPU.
Fine-tuning large language models (LLMs) has achieved remarkable performance across various natural language processing tasks, yet it demands more and more memory as model sizes keep growing. To address this issue, the recently proposed Memory-efficient Zeroth-order (MeZO) methods attempt to fine-tune LLMs using only forward passes, thereby avoiding the need for a backpropagation graph. However, significant performance drops and a high risk of divergence have limited their widespread adoption. In this paper, we propose the Adaptive Zeroth-order Tensor-Train Adaption (AdaZeta) framework, specifically designed to improve the performance and convergence of the ZO methods. To enhance dimension-dependent ZO estimation accuracy, we introduce a fast-forward, low-parameter tensorized adapter. To tackle the frequently observed divergence issue in large-scale ZO fine-tuning tasks, we propose an adaptive query number schedule that guarantees convergence. Detailed theoretical analysis and extensive experimental results on Roberta-Large and Llama-2-7B models substantiate the efficacy of our AdaZeta framework in terms of accuracy, memory efficiency, and convergence speed.