The surge in online content has created an urgent demand for robust detection systems, especially in non-English contexts where current tools demonstrate significant limitations. We introduce forePLay, a novel Polish-language dataset for erotic content detection, comprising over 24,000 annotated sentences. The dataset features a multidimensional taxonomy that captures ambiguity, violence, and socially unacceptable behaviors. Our comprehensive evaluation demonstrates that specialized Polish language models achieve superior performance compared to multilingual alternatives, with transformer-based architectures showing particular strength in handling imbalanced categories. The dataset and accompanying analysis establish essential frameworks for developing linguistically-aware content moderation systems, while highlighting critical considerations for extending such capabilities to morphologically complex languages.
Alignment is the critical process of minimizing harmful outputs by teaching large language models (LLMs) to prefer safe, helpful and appropriate responses. While the majority of alignment research and datasets remain overwhelmingly English-centric, ensuring safety across diverse linguistic and cultural contexts requires localized resources. In this paper, we introduce the first Polish preference dataset PLLuM-Align, created entirely through human annotation to reflect Polish language and cultural nuances. The dataset includes response rating, ranking, and multi-turn dialog data. Designed to reflect the linguistic subtleties and cultural norms of Polish, this resource lays the groundwork for more aligned Polish LLMs and contributes to the broader goal of multilingual alignment in underrepresented languages.
Since the Internet is flooded with hate, it is one of the main tasks for NLP experts to master automated online content moderation. However, advancements in this field require improved access to publicly available accurate and non-synthetic datasets of social media content. For the Polish language, such resources are very limited. In this paper, we address this gap by presenting a new open dataset of offensive social media content for the Polish language. The dataset comprises content from Wykop.pl, a popular online service often referred to as the Polish Reddit, reported by users and banned in the internal moderation process. It contains a total of 691,662 posts and comments, evenly divided into two categories: harmful and neutral (non-harmful). The anonymized subset of the BAN-PL dataset consisting on 24,000 pieces (12,000 for each class), along with preprocessing scripts have been made publicly available. Furthermore the paper offers valuable insights into real-life content moderation processes and delves into an analysis of linguistic features and content characteristics of the dataset. Moreover, a comprehensive anonymization procedure has been meticulously described and applied. The prevalent biases encountered in similar datasets, including post-moderation and pre-selection biases, are also discussed.