Andrei Niculae


2025

pdf bib
A Retrieval-Based Approach to Medical Procedure Matching in Romanian
Andrei Niculae | Adrian Cosma | Emilian Radoi
Proceedings of the 24th Workshop on Biomedical Language Processing

Accurately mapping medical procedure names from healthcare providers to standardized terminology used by insurance companies is a crucial yet complex task. Inconsistencies in naming conventions lead to missclasified procedures, causing administrative inefficiencies and insurance claim problems in private healthcare settings. Many companies still use human resources for manual mapping, while there is a clear opportunity for automation. This paper proposes a retrieval-based architecture leveraging sentence embeddings for medical name matching in the Romanian healthcare system. This challenge is significantly more difficult in underrepresented languages such as Romanian, where existing pretrained language models lack domain-specific adaptation to medical text. We evaluate multiple embedding models, including Romanian, multilingual, and medical-domain-specific representations, to identify the most effective solution for this task. Our findings contribute to the broader field of medical NLP for low-resource languages such as Romanian.

pdf bib
Dr. Copilot: A Multi-Agent Prompt Optimized Assistant for Improving Patient-Doctor Communication in Romanian
Andrei Niculae | Adrian Cosma | Cosmin Dumitrache | Emilian Radoi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Text-based telemedicine has become increasingly common, yet the quality of medical advice in doctor-patient interactions is often judged more on how advice is communicated rather than its clinical accuracy. To address this, we introduce Dr.Copilot, a multi-agent large language model (LLM) system that supports Romanian-speaking doctors by evaluating and enhancing the presentation quality of their written responses. Rather than assessing medical correctness, Dr.Copilot provides feedback along 17 interpretable quality measures. The system comprises of three LLM agents with prompts automatically optimized via DSPy. Designed with low-resource Romanian data and deployed using open-weight models, it delivers real-time specific feedback to doctors within a telemedicine platform. Empirical evaluations and live deployment with 41 doctors show measurable improvements in user reviews and response quality, marking one of the first real-world deployments of LLMs in Romanian medical settings.