Morality serves as the foundation of societal structure, guiding legal systems, shaping cultural values, and influencing individual self-perception. With the rise and pervasiveness of generative AI tools, and particularly Large Language Models (LLMs), concerns arise regarding how these tools capture and potentially alter moral dimensions through machine-generated text manipulation. Based on the Moral Foundation Theory, our work investigates this topic by analyzing the behavior of 12 LLMs among the most widely used Open and uncensored (i.e., ”abliterated”) models, and leveraging human-annotated datasets used in moral-related analysis. Results have shown varying levels of alteration of moral expressions depending on the type of text modification task and moral-related conditioning prompt.
Moralities, emotions, and events are complex aspects of human cognition, which are often treated separately since capturing their combined effects is challenging, especially due to the lack of annotated data. Leveraging their interrelations hence becomes crucial for advancing the understanding of human moral behaviors. In this work, we propose ME2-BERT, the first holistic framework for fine-tuning a pre-trained language model like BERT to the task of moral foundation prediction. ME2-BERT integrates events and emotions for learning domain-invariant morality-relevant text representations. Our extensive experiments show that ME2-BERT outperforms existing state-of-the-art methods for moral foundation prediction, with an average increase up to 35% in the out-of-domain scenario.
Open Large Language Models (OLLMs) are increasingly leveraged in generative AI applications, posing new challenges for detecting their outputs. We propose OpenTuringBench, a new benchmark based on OLLMs, designed to train and evaluate machine-generated text detectors on the Turing Test and Authorship Attribution problems. OpenTuringBench focuses on a representative set of OLLMs, and features a number of challenging evaluation tasks, including human/machine-manipulated texts, out-of-domain texts, and texts from previously unseen models. We also provide OTBDetector, a contrastive learning framework to detect and attribute OLLM-based machine-generated texts. Results highlight the relevance and varying degrees of difficulty of the OpenTuringBench tasks, with our detector achieving remarkable capabilities across the various tasks and outperforming most existing detectors.
Verbs form the backbone of language, providing the structure and meaning to sentences. Yet, their intricate semantic nuances pose a longstanding challenge. Understanding verb relations through the concept of lexical entailment is crucial for comprehending sentence meanings and grasping verb dynamics. This work investigates the capabilities of eight Large Language Models in recognizing lexical entailment relations among verbs through differently devised prompting strategies and zero-/few-shot settings over verb pairs from two lexical databases, namely WordNet and HyperLex. Our findings unveil that the models can tackle the lexical entailment recognition task with moderately good performance, although at varying degree of effectiveness and under different conditions. Also, utilizing few-shot prompting can enhance the models’ performance. However, perfectly solving the task arises as an unmet challenge for all examined LLMs, which raises an emergence for further research developments on this topic.