Effective product schema modeling is fundamental to e-commerce success, enabling accurate product discovery and superior customer experience. However, traditional manual schema modeling processes are severely bottlenecked, producing only tens of attributes per month, which is insufficient for modern e-commerce platforms managing thousands of product types. This paper introduces AttributeForge, the first framework to automate end-to-end product schema modeling using Large Language Models (LLMs). Our key innovation lies in orchestrating 43 specialized LLM agents through strategic workflow patterns to handle the complex interdependencies in schema generation. The framework incorporates two novel components: MC2-Eval, a comprehensive validation system that assesses schemas against technical, business, and customer experience requirements; and AutoFix, an intelligent mechanism that automatically corrects modeling defects through iterative refinement. Deployed in production, AttributeForge achieves an 88× increase in modeling throughput while delivering superior quality: a 59.83% Good-to-Good (G2G) conversion rate compared to 37.50% for manual approaches. This significant improvement in both speed and quality enables e-commerce platforms to rapidly adapt their product schemas to evolving market needs.
Users expect their queries to be answered by search systems, regardless of the query’s surface form, which include keyword queries and natural questions. Natural Language Understanding (NLU) components of Search and QA systems may fail to correctly interpret semantically equivalent inputs if this deviates from how the system was trained, leading to suboptimal understanding capabilities. We propose the keyword-question rewriting task to improve query understanding capabilities of NLU systems for all surface forms. To achieve this, we present CycleKQR, an unsupervised approach, enabling effective rewriting between keyword and question queries using non-parallel data.Empirically we show the impact on QA performance of unfamiliar query forms for open domain and Knowledge Base QA systems (trained on either keywords or natural language questions). We demonstrate how CycleKQR significantly improves QA performance by rewriting queries into the appropriate form, while at the same time retaining the original semantic meaning of input queries, allowing CycleKQR to improve performance by up to 3% over supervised baselines. Finally, we release a datasetof 66k keyword-question pairs.