Charts are ubiquitous as they help people understand and reason with data. Recently, various downstream tasks, such as chart question answering, chart2text, and fact-checking, have emerged. Large Vision-Language Models (LVLMs) show promise in tackling these tasks, but their evaluation is costly and time-consuming, limiting real-world deployment. While using LVLMs as judges to assess chart comprehension capabilities of other LVLMs could streamline evaluation processes, challenges like proprietary datasets, restricted access to powerful models, and evaluation costs hinder their adoption in industrial settings. To this end, we present a comprehensive evaluation of 13 open-source LVLMs as judges for diverse chart comprehension and reasoning tasks. We design both pairwise and pointwise evaluation tasks covering criteria like factual correctness, informativeness, and relevancy. Additionally, we analyze LVLM judges based on format adherence, positional consistency, length bias, and instruction-following. We focus on cost-effective LVLMs (<10B parameters) suitable for both research and commercial use, following a standardized evaluation protocol and rubric to measure the LVLM judge accuracy. Experimental results reveal notable variability: while some open LVLM judges achieve GPT-4-level evaluation performance (about 80% agreement with GPT-4 judgments), others struggle (below ~10% agreement). Our findings highlight that state-of-the-art open-source LVLMs can serve as cost-effective automatic evaluators for chart-related tasks, though biases such as positional preference and length bias persist.
Large Vision-Language Models (LVLMs) with only 7B parameters have shown promise as automated judges in chart comprehension tasks. However, tiny models (<=2B parameters) still perform poorly as judges, limiting their real-world use in resource-constrained settings. To address this, we propose two approaches to ensure cost‐efficient evaluation: (i) multi-criteria prompting, which combines separate evaluation criteria into a single query, and (ii) domain‐adaptive transfer learning, in which we fine‐tune a 2B‐parameter VLM on synthetic judgments in a chart dataset to create the ChartJudge. Experiments show that multi-criteria prompting exposes robustness gaps, which led to a huge drop in performance for 7B models, including specialized LVLM judges like LLaVA‐Critic. In addition, we find that our tiny LVLM (ChartJudge) can effectively transfer knowledge from one dataset to another to make it a more specialized model. Our fine-grained analysis across chart types and query complexities offers actionable insights into trade-offs between model size, prompt design, and transferability, enabling scalable, low-cost evaluation for chart reasoning tasks. Our code and the data will be made publicly available.
Large Language Models (LLMs) have recently gained significant attention due to their remarkable capabilities in performing diverse tasks across various domains. However, a thorough evaluation of these models is crucial before deploying them in real-world applications to ensure they produce reliable performance. Despite the well-established importance of evaluating LLMs in the community, the complexity of the evaluation process has led to varied evaluation setups, causing inconsistencies in findings and interpretations. To address this, we systematically review the primary challenges and limitations causing these inconsistencies and unreliable evaluations in various steps of LLM evaluation. Based on our critical review, we present our perspectives and recommendations to ensure LLM evaluations are reproducible, reliable, and robust.