Amlan Kar


2025

pdf bib
Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions
David Acuna | Ximing Lu | Jaehun Jung | Hyunwoo Kim | Amlan Kar | Sanja Fidler | Yejin Choi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent research in vision-language models (VLMs) has centered around the possibility of equipping them with implicit long-form chain-of-thought reasoning—akin to the success observed in language models—via distillation and reinforcement learning. But what about the non-reasoning models already trained and deployed across the internet? Should we simply abandon them, or is there hope for a search mechanism that can elicit hidden knowledge and induce long reasoning traces— without any additional training or supervision? In this paper, we explore this possibility using a Monte Carlo Tree Search (MCTS)-inspired algorithm, which injects subquestion–subanswer pairs into the model’s output stream. We show that framing reasoning as a search process—where subquestions act as latent decisions within a broader inference trajectory—helps the model “connect the dots” between fragmented knowledge and produce extended reasoning traces in non-reasoning models. We evaluate our method across three benchmarks and observe consistent improvements. Notably, our approach yields a 2% overall improvement on MMMU-PRO, including a significant 9% gain in Liberal Arts.