2025
pdf
bib
abs
Evaluating the Effectiveness and Scalability of LLM-Based Data Augmentation for Retrieval
Pranjal A Chitale
|
Bishal Santra
|
Yashoteja Prabhu
|
Amit Sharma
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Compact dual-encoder models are widely used for retrieval owing to their efficiency and scalability. However, such models often underperform compared to their Large Language Model (LLM)-based retrieval counterparts, likely due to their limited world knowledge. While LLM-based data augmentation has been proposed as a strategy to bridge this performance gap, there is insufficient understanding of its effectiveness and scalability to real-world retrieval problems. Existing research does not systematically explore key factors such as the optimal augmentation scale, the necessity of using large augmentation models, and whether diverse augmentations improve generalization, particularly in out-of-distribution (OOD) settings. This work presents a comprehensive study of the effectiveness of LLM augmentation for retrieval, comprising over 100 distinct experimental settings of retrieval models, augmentation models and augmentation strategies. We find that, while augmentation enhances retrieval performance, its benefits diminish beyond a certain scale, even with diverse augmentation strategies. Surprisingly, we observe that augmentation with smaller LLMs can achieve performance competitive with larger augmentation models. Moreover, we examine how augmentation effectiveness varies with retrieval model pre-training, revealing that augmentation provides the most benefit to models which are not well pre-trained. Our insights pave the way for more judicious and efficient augmentation strategies, thus enabling informed decisions and maximizing retrieval performance while being more cost-effective.
pdf
bib
abs
Task Facet Learning: A Structured Approach To Prompt Optimization
Gurusha Juneja
|
Gautam Jajoo
|
Hua Li
|
Jian Jiao
|
Nagarajan Natarajan
|
Amit Sharma
Findings of the Association for Computational Linguistics: ACL 2025
Given a task in the form of a basic description and its training examples, prompt optimization is the problem of synthesizing the given information into a text prompt for a large language model. Humans solve this problem by also considering the different facets that define a task (e.g., counter-examples, explanations, analogies) and including them in the prompt. However, it is unclear whether existing algorithmic approaches, based on iteratively editing a given prompt or automatically selecting a few in-context examples, can cover the multiple facets required to solve a complex task. In this work, we view prompt optimization as that of learning multiple facets of a task from a set of training examples. We exploit structure in the prompt optimization problem and break down a prompt into loosely coupled semantic sections. The proposed algorithm, UniPrompt, (1) clusters the input space and uses clustered batches so that each batch likely corresponds to a different facet of the task, and (2) utilizes a feedback mechanism to propose adding, editing or deleting a section, which in turn is aggregated over a batch to capture generalizable facets. Empirical evaluation on multiple datasets and a real-world task shows that prompts generated using UniPrompt obtain higher accuracy than human-tuned prompts and those from state-of-the-art methods. In particular, our algorithm can generate long, complex prompts that existing methods are unable to generate.
2024
pdf
bib
abs
NICE: To Optimize In-Context Examples or Not?
Pragya Srivastava
|
Satvik Golechha
|
Amit Deshpande
|
Amit Sharma
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent work shows that in-context learning and optimization of in-context examples (ICE) can significantly improve the accuracy of large language models (LLMs) on a wide range of tasks, leading to an apparent consensus that ICE optimization is crucial for better performance. However, most of these studies assume a fixed or no instruction provided in the prompt. We challenge this consensus by investigating the necessity of optimizing ICE when task-specific instructions are provided and find that there are many tasks for which it yields diminishing returns. In particular, using a diverse set of tasks and a systematically created instruction set with gradually added details, we find that as the prompt instruction becomes more detailed, the returns on ICE optimization diminish. To characterize this behavior, we introduce a task-specific metric called Normalized Invariability to Choice of Examples (NICE) that quantifies the learnability of tasks from a given instruction, and provides a heuristic to help decide whether to optimize instructions or ICE for a new task. Given a task, the proposed metric can reliably predict the utility of optimizing ICE compared to using random ICE. Our code is available at [https://github.com/microsoft/nice-icl](https://github.com/microsoft/nice-icl).
2023
pdf
bib
abs
Controlling Learned Effects to Reduce Spurious Correlations in Text Classifiers
Parikshit Bansal
|
Amit Sharma
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
To address the problem of NLP classifiers learning spurious correlations between training features and target labels, a common approach is to make the model’s predictions invariant to these features. However, this can be counter-productive when the features have a non-zero causal effect on the target label and thus are important for prediction. Therefore, using methods from the causal inference literature, we propose an algorithm to regularize the learnt effect of the features on the model’s prediction to the estimated effect of feature on label. This results in an automated augmentation method that leverages the estimated effect of a feature to appropriately change the labels for new augmented inputs. On toxicity and IMDB review datasets, the proposed algorithm minimises spurious correlations and improves the minority group (i.e., samples breaking spurious correlations) accuracy, while also improving the total accuracy compared to standard training.
2020
pdf
bib
abs
Learnings from Technological Interventions in a Low Resource Language: A Case-Study on Gondi
Devansh Mehta
|
Sebastin Santy
|
Ramaravind Kommiya Mothilal
|
Brij Mohan Lal Srivastava
|
Alok Sharma
|
Anurag Shukla
|
Vishnu Prasad
|
Venkanna U
|
Amit Sharma
|
Kalika Bali
Proceedings of the Twelfth Language Resources and Evaluation Conference
The primary obstacle to developing technologies for low-resource languages is the lack of usable data. In this paper, we report the adaption and deployment of 4 technology-driven methods of data collection for Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. In the process of data collection, we also help in its revival by expanding access to information in Gondi through the creation of linguistic resources that can be used by the community, such as a dictionary, children’s stories, an app with Gondi content from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform. At the end of these interventions, we collected a little less than 12,000 translated words and/or sentences and identified more than 650 community members whose help can be solicited for future translation efforts. The larger goal of the project is collecting enough data in Gondi to build and deploy viable language technologies like machine translation and speech to text systems that can help take the language onto the internet.