Amirhossein Dabiriaghdam


2025

pdf bib
SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models
Amirhossein Dabiriaghdam | Lele Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs’ outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.

pdf bib
SOI Matters: Analyzing Multi-Setting Training Dynamics in Pretrained Language Models via Subsets of Interest
Shayan Vassef | Amirhossein Dabiriaghdam | Mohammadreza Bakhtiari | Yadollah Yaghoobzadeh
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025)

This work investigates the impact of multi-task, multi-lingual, and multi-source learning approaches on the robustness and performance of pretrained language models. To enhance this analysis, we introduce Subsets of Interest (SOI), a novel categorization framework that identifies six distinct learning behavior patterns during training, including forgettable examples, unlearned examples, and always correct examples. Through SOI transition heatmaps and dataset cartography visualization, we analyze how examples shift between these categories when transitioning from single-setting to multi-setting configurations. We perform comprehensive experiments across three parallel comparisons: multi-task vs. single-task learning using English tasks (entailment, paraphrase, sentiment), multi-source vs. single-source learning using sentiment analysis datasets, and multi-lingual vs. single-lingual learning using intent classification in French, English, and Persian. Our results demonstrate that multi-source learning consistently improves out-of-distribution performance by up to 7%, while multi-task learning shows mixed results with notable gains in similar task combinations. We further introduce a two-stage fine-tuning approach where the second stage leverages SOI-based subset selection to achieve additional performance improvements. These findings provide new insights into training dynamics and offer practical approaches for optimizing multi-setting language model performance.

2024

pdf bib
BCAmirs at SemEval-2024 Task 4: Beyond Words: A Multimodal and Multilingual Exploration of Persuasion in Memes
Amirhossein Abaskohi | Amirhossein Dabiriaghdam | Lele Wang | Giuseppe Carenini
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Memes, combining text and images, frequently use metaphors to convey persuasive messages, shaping public opinion. Motivated by this, our team engaged in SemEval-2024 Task 4, a hierarchical multi-label classification task designed to identify rhetorical and psychological persuasion techniques embedded within memes. To tackle this problem, we introduced a caption generation step to assess the modality gap and the impact of additional semantic information from images, which improved our result. Our best model utilizes GPT-4 generated captions alongside meme text to fine-tune RoBERTa as the text encoder and CLIP as the image encoder. It outperforms the baseline by a large margin in all 12 subtasks. In particular, it ranked in top-3 across all languages in Subtask 2a, and top-4 in Subtask 2b, demonstrating quantitatively strong performance. The improvement achieved by the introduced intermediate step is likely attributable to the metaphorical essence of images that challenges visual encoders. This highlights the potential for improving abstract visual semantics encoding.