Alvin Chan


2025

pdf bib
How to Make Large Language Models Generate 100% Valid Molecules?
Wen Tao | Jing Tang | Alvin Chan | Bryan Hooi | Baolong Bi | Nanyun Peng | Yuansheng Liu | Yiwei Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Molecule generation is key to drug discovery and materials science, enabling the design of novel compounds with specific properties. Large language models (LLMs) can learn to perform a wide range of tasks from just a few examples. However, generating valid molecules using representations like SMILES is challenging for LLMs in few-shot settings. In this work, we explore how LLMs can generate 100% valid molecules. We evaluate whether LLMs can use SELFIES, a representation where every string corresponds to a valid molecule, for valid molecule generation but find that LLMs perform worse with SELFIES than with SMILES. We then examine LLMs’ ability to correct invalid SMILES and find their capacity limited. Finally, we introduce SmiSelf, a cross-chemical language framework for invalid SMILES correction. SmiSelf converts invalid SMILES to SELFIES using grammatical rules, leveraging SELFIES’ mechanisms to correct the invalid SMILES. Experiments show that SmiSelf ensures 100% validity while preserving molecular characteristics and maintaining or even enhancing performance on other metrics. SmiSelf helps expand LLMs’ practical applications in biomedicine and is compatible with all SMILES-based generative models. Code is available at https://github.com/wentao228/SmiSelf.

2021

pdf bib
On Orthogonality Constraints for Transformers
Aston Zhang | Alvin Chan | Yi Tay | Jie Fu | Shuohang Wang | Shuai Zhang | Huajie Shao | Shuochao Yao | Roy Ka-Wei Lee
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Orthogonality constraints encourage matrices to be orthogonal for numerical stability. These plug-and-play constraints, which can be conveniently incorporated into model training, have been studied for popular architectures in natural language processing, such as convolutional neural networks and recurrent neural networks. However, a dedicated study on such constraints for transformers has been absent. To fill this gap, this paper studies orthogonality constraints for transformers, showing the effectiveness with empirical evidence from ten machine translation tasks and two dialogue generation tasks. For example, on the large-scale WMT’16 En→De benchmark, simply plugging-and-playing orthogonality constraints on the original transformer model (Vaswani et al., 2017) increases the BLEU from 28.4 to 29.6, coming close to the 29.7 BLEU achieved by the very competitive dynamic convolution (Wu et al., 2019).

2020

pdf bib
Would you Rather? A New Benchmark for Learning Machine Alignment with Cultural Values and Social Preferences
Yi Tay | Donovan Ong | Jie Fu | Alvin Chan | Nancy Chen | Anh Tuan Luu | Chris Pal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Understanding human preferences, along with cultural and social nuances, lives at the heart of natural language understanding. Concretely, we present a new task and corpus for learning alignments between machine and human preferences. Our newly introduced problem is concerned with predicting the preferable options from two sentences describing scenarios that may involve social and cultural situations. Our problem is framed as a natural language inference task with crowd-sourced preference votes by human players, obtained from a gamified voting platform. We benchmark several state-of-the-art neural models, along with BERT and friends on this task. Our experimental results show that current state-of-the-art NLP models still leave much room for improvement.

pdf bib
Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder
Alvin Chan | Yi Tay | Yew-Soon Ong | Aston Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

This paper demonstrates a fatal vulnerability in natural language inference (NLI) and text classification systems. More concretely, we present a ‘backdoor poisoning’ attack on NLP models. Our poisoning attack utilizes conditional adversarially regularized autoencoder (CARA) to generate poisoned training samples by poison injection in latent space. Just by adding 1% poisoned data, our experiments show that a victim BERT finetuned classifier’s predictions can be steered to the poison target class with success rates of >80% when the input hypothesis is injected with the poison signature, demonstrating that NLI and text classification systems face a huge security risk.