2025
pdf
bib
abs
Hallucination Detection in LLMs Using Spectral Features of Attention Maps
Jakub Binkowski
|
Denis Janiak
|
Albert Sawczyn
|
Bogdan Gabrys
|
Tomasz Jan Kajdanowicz
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks but remain prone to hallucinations. Detecting hallucinations is essential for safety-critical applications, and recent methods leverage attention map properties to this end, though their effectiveness remains limited. In this work, we investigate the spectral features of attention maps by interpreting them as adjacency matrices of graph structures. We propose the LapEigvals method, which utilises the top-k eigenvalues of the Laplacian matrix derived from the attention maps as an input to hallucination detection probes. Empirical evaluations demonstrate that our approach achieves state-of-the-art hallucination detection performance among attention-based methods. Extensive ablation studies further highlight the robustness and generalisation of LapEigvals, paving the way for future advancements in the hallucination detection domain.
pdf
bib
abs
The Illusion of Progress: Re-evaluating Hallucination Detection in LLMs
Denis Janiak
|
Jakub Binkowski
|
Albert Sawczyn
|
Bogdan Gabrys
|
Ravid Shwartz-Ziv
|
Tomasz Jan Kajdanowicz
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have revolutionized natural language processing, yet their tendency to hallucinate poses serious challenges for reliable deployment. Despite numerous hallucination detection methods, their evaluations often rely on ROUGE, a metric based on lexical overlap that misaligns with human judgments. Through comprehensive human studies, we demonstrate that while ROUGE exhibits high recall, its extremely low precision leads to misleading performance estimates. In fact, several established detection methods show performance drops of up to 45.9% when assessed using human-aligned metrics like LLM-as-Judge. Moreover, our analysis reveals that simple heuristics based on response length can rival complex detection techniques, exposing a fundamental flaw in current evaluation practices. We argue that adopting semantically aware and robust evaluation frameworks is essential to accurately gauge the true performance of hallucination detection methods, ultimately ensuring the trustworthiness of LLM outputs.
2024
pdf
bib
abs
Developing PUGG for Polish: A Modern Approach to KBQA, MRC, and IR Dataset Construction
Albert Sawczyn
|
Katsiaryna Viarenich
|
Konrad Wojtasik
|
Aleksandra Domogała
|
Marcin Oleksy
|
Maciej Piasecki
|
Tomasz Kajdanowicz
Findings of the Association for Computational Linguistics: ACL 2024
Advancements in AI and natural language processing have revolutionized machine-human language interactions, with question answering (QA) systems playing a pivotal role. The knowledge base question answering (KBQA) task, utilizing structured knowledge graphs (KG), allows for handling extensive knowledge-intensive questions. However, a significant gap exists in KBQA datasets, especially for low-resource languages. Many existing construction pipelines for these datasets are outdated and inefficient in human labor, and modern assisting tools like Large Language Models (LLM) are not utilized to reduce the workload. To address this, we have designed and implemented a modern, semi-automated approach for creating datasets, encompassing tasks such as KBQA, Machine Reading Comprehension (MRC), and Information Retrieval (IR), tailored explicitly for low-resource environments. We executed this pipeline and introduced the PUGG dataset, the first Polish KBQA dataset, and novel datasets for MRC and IR. Additionally, we provide a comprehensive implementation, insightful findings, detailed statistics, and evaluation of baseline models.
pdf
bib
abs
Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings
Albert Sawczyn
|
Jakub Binkowski
|
Piotr Bielak
|
Tomasz Kajdanowicz
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Knowledge-intensive tasks pose a significant challenge for Machine Learning (ML) techniques. Commonly adopted methods, such as Large Language Models (LLMs), often exhibit limitations when applied to such tasks. Nevertheless, there have been notable endeavours to mitigate these challenges, with a significant emphasis on augmenting LLMs through Knowledge Graphs (KGs). While KGs provide many advantages for representing knowledge, their development costs can deter extensive research and applications. Addressing this limitation, we introduce a framework for enriching embeddings of small-scale domain-specific Knowledge Graphs with well-established general-purpose KGs. Adopting our method, a modest domain-specific KG can benefit from a performance boost in downstream tasks when linked to a substantial general-purpose KG. Experimental evaluations demonstrate a notable enhancement, with up to a 44% increase observed in the Hits@10 metric. This relatively unexplored research direction can catalyze more frequent incorporation of KGs in knowledge-intensive tasks, resulting in more robust, reliable ML implementations, which hallucinates less than prevalent LLM solutions.