Akhil Arora


2025

pdf bib
Women, Infamous, and Exotic Beings: A Comparative Study of Honorific Usages in Wikipedia and LLMs for Bengali and Hindi
Sourabrata Mukherjee | Atharva Mehta | Sougata Saha | Akhil Arora | Monojit Choudhury
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The obligatory use of third-person honorifics is a distinctive feature of several South Asian languages, encoding nuanced socio-pragmatic cues such as power, age, gender, fame, and social distance.In this work, (i) We present the first large-scale study of third-person honorific pronoun and verb usage across 10,000 Hindi and Bengali Wikipedia articles with annotations linked to key socio-demographic attributes of the subjects, including gender, age group, fame, and cultural origin.(ii) Our analysis uncovers systematic intra-language regularities but notable cross-linguistic differences: honorifics are more prevalent in Bengali than in Hindi, while non-honorifics dominate while referring to infamous, juvenile, and culturally “exotic” entities. Notably, in both languages, and more prominently in Hindi, men are more frequently addressed with honorifics than women.(iii) To examine whether large language models (LLMs) internalize similar socio-pragmatic norms, we probe six LLMs using controlled generation and translation tasks over 1,000 culturally balanced entities. We find that LLMs diverge from Wikipedia usage, exhibiting alternative preferences in honorific selection across tasks, languages, and socio-demographic attributes. These discrepancies highlight gaps in the socio-cultural alignment of LLMs and open new directions for studying how LLMs acquire, adapt, or distort social-linguistic norms. Our code and data are publicly available at https://github.com/souro/honorific-wiki-llm

pdf bib
Proceedings of the 2nd Workshop on Advancing Natural Language Processing for Wikipedia (WikiNLP 2025)
Akhil Arora | Isaac Johnson | Lucie-Aimée Kaffee | Tzu-Sheng Kuo | Tiziano Piccardi | Indira Sen
Proceedings of the 2nd Workshop on Advancing Natural Language Processing for Wikipedia (WikiNLP 2025)

2024

pdf bib
Entity Insertion in Multilingual Linked Corpora: The Case of Wikipedia
Tomás Feith | Akhil Arora | Martin Gerlach | Debjit Paul | Robert West
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Links are a fundamental part of information networks, turning isolated pieces of knowledge into a network of information that is much richer than the sum of its parts. However, adding a new link to the network is not trivial: it requires not only the identification of a suitable pair of source and target entities but also the understanding of the content of the source to locate a suitable position for the link in the text. The latter problem has not been addressed effectively, particularly in the absence of text spans in the source that could serve as anchors to insert a link to the target entity. To bridge this gap, we introduce and operationalize the task of entity insertion in information networks. Focusing on the case of Wikipedia, we empirically show that this problem is, both, relevant and challenging for editors. We compile a benchmark dataset in 105 languages and develop a framework for entity insertion called LocEI (Localized Entity Insertion) and its multilingual variant XLocEI. We show that XLocEI outperforms all baseline models (including state-of-the-art prompt-based ranking with LLMs such as GPT-4) and that it can be applied in a zero-shot manner on languages not seen during training with minimal performance drop. These findings are important for applying entity insertion models in practice, e.g., to support editors in adding links across the more than 300 language versions of Wikipedia.

2022

pdf bib
Efficient Entity Candidate Generation for Low-Resource Languages
Alberto Garcia-Duran | Akhil Arora | Robert West
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Candidate generation is a crucial module in entity linking. It also plays a key role in multiple NLP tasks that have been proven to beneficially leverage knowledge bases. Nevertheless, it has often been overlooked in the monolingual English entity linking literature, as naïve approaches obtain very good performance. Unfortunately, the existing approaches for English cannot be successfully transferred to poorly resourced languages. This paper constitutes an in-depth analysis of the candidate generation problem in the context of cross-lingual entity linking with a focus on low-resource languages. Among other contributions, we point out limitations in the evaluation conducted in previous works. We introduce a characterization of queries into types based on their difficulty, which improves the interpretability of the performance of different methods. We also propose a light-weight and simple solution based on the construction of indexes whose design is motivated by more complex transfer learning based neural approaches. A thorough empirical analysis on 9 real-world datasets under 2 evaluation settings shows that our simple solution outperforms the state-of-the-art approach in terms of both quality and efficiency for almost all datasets and query types.

pdf bib
Strong Heuristics for Named Entity Linking
Marko Čuljak | Andreas Spitz | Robert West | Akhil Arora
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Named entity linking (NEL) in news is a challenging endeavour due to the frequency of unseen and emerging entities, which necessitates the use of unsupervised or zero-shot methods. However, such methods tend to come with caveats, such as no integration of suitable knowledge bases (like Wikidata) for emerging entities, a lack of scalability, and poor interpretability. Here, we consider person disambiguation in Quotebank, a massive corpus of speaker-attributed quotations from the news, and investigate the suitability of intuitive, lightweight, and scalable heuristics for NEL in web-scale corpora. Our best performing heuristic disambiguates 94% and 63% of the mentions on Quotebank and the AIDA-CoNLL benchmark, respectively. Additionally, the proposed heuristics compare favourably to the state-of-the-art unsupervised and zero-shot methods, Eigenthemes and mGENRE, respectively, thereby serving as strong baselines for unsupervised and zero-shot entity linking.

2021

pdf bib
Low-Rank Subspaces for Unsupervised Entity Linking
Akhil Arora | Alberto Garcia-Duran | Robert West
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity linking is an important problem with many applications. Most previous solutions were designed for settings where annotated training data is available, which is, however, not the case in numerous domains. We propose a light-weight and scalable entity linking method, Eigenthemes, that relies solely on the availability of entity names and a referent knowledge base. Eigenthemes exploits the fact that the entities that are truly mentioned in a document (the “gold entities”) tend to form a semantically dense subset of the set of all candidate entities in the document. Geometrically speaking, when representing entities as vectors via some given embedding, the gold entities tend to lie in a low-rank subspace of the full embedding space. Eigenthemes identifies this subspace using the singular value decomposition and scores candidate entities according to their proximity to the subspace. On the empirical front, we introduce multiple strong baselines that compare favorably to (and sometimes even outperform) the existing state of the art. Extensive experiments on benchmark datasets from a variety of real-world domains showcase the effectiveness of our approach.