Airat Valiev


2025

pdf bib
RuCCoD: Towards Automated ICD Coding in Russian
Alexandr Nesterov | Andrey Sakhovskiy | Ivan Sviridov | Airat Valiev | Vladimir Makharev | Petr Anokhin | Galina Zubkova | Elena Tutubalina
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This study investigates the feasibility of automating clinical coding in Russian, a language with limited biomedical resources. We present a new dataset for ICD coding, which includes diagnosis fields from electronic health records (EHRs) annotated with over 10,000 entities and more than 1,500 unique ICD codes. This dataset serves as a benchmark for several state-of-the-art models, including BERT, LLaMA with LoRA, and RAG, with additional experiments examining transfer learning across domains (from PubMed abstracts to medical diagnosis) and terminologies (from UMLS concepts to ICD codes). We then apply the best-performing model to label an in-house EHR dataset containing patient histories from 2017 to 2021. Our experiments, conducted on a carefully curated test set, demonstrate that training with the automated predicted codes leads to a significant improvement in accuracy compared to manually annotated data from physicians. We believe our findings offer valuable insights into the potential for automating clinical coding in resource-limited languages like Russian, which could enhance clinical efficiency and data accuracy in these contexts. Our code and dataset are available at https://github.com/auto-icd-coding/ruccod.

2024

pdf bib
HSE NLP Team at MEDIQA-CORR 2024 Task: In-Prompt Ensemble with Entities and Knowledge Graph for Medical Error Correction
Airat Valiev | Elena Tutubalina
Proceedings of the 6th Clinical Natural Language Processing Workshop

This paper presents our LLM-based system designed for the MEDIQA-CORR @ NAACL-ClinicalNLP 2024 Shared Task 3, focusing on medical error detection and correction in medical records. Our approach consists of three key components: entity extraction, prompt engineering, and ensemble. First, we automatically extract biomedical entities such as therapies, diagnoses, and biological species. Next, we explore few-shot learning techniques and incorporate graph information from the MeSH database for the identified entities. Finally, we investigate two methods for ensembling: (i) combining the predictions of three previous LLMs using an AND strategy within a prompt and (ii) integrating the previous predictions into the prompt as separate ‘expert’ solutions, accompanied by trust scores representing their performance. The latter system ranked second with a BERTScore score of 0.8059 and third with an aggregated score of 0.7806 out of the 15 teams’ solutions in the shared task.