We introduce a zero-shot merging framework for large language models (LLMs) that consolidates specialized domain experts into a single model without any further training. Our core contribution lies in leveraging relative task vectors—difference representations encoding each expert’s unique traits with respect to a shared base model—to guide a principled and efficient merging process. By dissecting parameters into common dimensions (averaged across experts) and complementary dimensions (unique to each expert), we strike an optimal balance between generalization and specialization. We further devise a compression mechanism for the complementary parameters, retaining only principal components and scalar multipliers per expert, thereby minimizing overhead. A dynamic router then selects the most relevant domain at inference, ensuring that domain-specific precision is preserved. Experiments on code generation, mathematical reasoning, medical question answering, and instruction-following benchmarks confirm the versatility and effectiveness of our approach. Altogether, this framework enables truly adaptive and scalable LLMs that seamlessly integrate specialized knowledge for improved zero-shot performance.
The next token prediction loss is the dominant self-supervised training objective for large language models and has achieved promising results in a variety of downstream tasks. However, upon closer investigation of this objective, we find that it lacks an understanding of sequence-level signals, leading to a mismatch between training and inference processes. To bridge this gap, we introduce a contrastive preference optimization (CPO) procedure that can inject sequence-level information into the language model at any training stage without expensive human labeled data. Our experiments show that the proposed objective surpasses the next token prediction in terms of win rate in the instruction-following and text generation tasks.
Deep learning-based Natural Language Processing (NLP) models are vulnerable to adversarial attacks, where small perturbations can cause a model to misclassify. Adversarial Training (AT) is often used to increase model robustness. However, we have discovered an intriguing phenomenon: deliberately or accidentally miscalibrating models masks gradients in a way that interferes with adversarial attack search methods, giving rise to an apparent increase in robustness. We show that this observed gain in robustness is an illusion of robustness (IOR), and demonstrate how an adversary can perform various forms of test-time temperature calibration to nullify the aforementioned interference and allow the adversarial attack to find adversarial examples. Hence, we urge the NLP community to incorporate test-time temperature scaling into their robustness evaluations to ensure that any observed gains are genuine. Finally, we show how the temperature can be scaled during training to improve genuine robustness.
Training with mixed data distributions is a common and important part of creating multi-task and instruction-following models. The diversity of the data distributions and cost of joint training makes the optimization procedure extremely challenging. Data mixing methods partially address this problem, albeit having a sub-optimal performance across data sources and require multiple expensive training runs. In this paper, we propose a simple and efficient alternative for better optimization of the data sources by combining models individually trained on each data source with the base model using basic element-wise vector operations. The resulting model, namely Distribution Edited Model (DEM), is cheaper than standard data mixing and outperforms strong baselines on a variety of benchmarks, yielding upto 6.2% improvement on MMLU, 11.5% on BBH, 16.1% on DROP, 6% MathQA and 9.3% on HELM with models of size 3B to 13B. Notably, DEM does not require full re-training when modifying a single data-source, thus making it very flexible and scalable for training with diverse data sources. The code is available at https://github.com/amazon-science/dem-distribution-edited-model.