We introduce DRISHTIKON, a first-of-its-kind multimodal and multilingual benchmark centered exclusively on Indian culture, designed to evaluate the cultural understanding of generative AI systems. Unlike existing benchmarks with a generic or global scope, DRISHTIKON offers deep, fine-grained coverage across India’s diverse regions, spanning 15 languages, covering all states and union territories, and incorporating over 64,000 aligned text-image pairs. The dataset captures rich cultural themes including festivals, attire, cuisines, art forms, and historical heritage amongst many more. We evaluate a wide range of vision-language models (VLMs), including open-source small and large models, proprietary systems, reasoning-specialized VLMs, and Indic-focused models—across zero-shot and chain-of-thought settings. Our results expose key limitations in current models’ ability to reason over culturally grounded, multimodal inputs, particularly for low-resource languages and less-documented traditions. DRISHTIKON fills a vital gap in inclusive AI research, offering a robust testbed to advance culturally aware, multimodally competent language technologies.
Alignment is no longer a luxury; it is a necessity. As large language models (LLMs) enter high-stakes domains like education, healthcare, governance, and law, their behavior must reliably reflect human-aligned values and safety constraints. Yet current evaluations rely heavily on behavioral proxies such as refusal rates, G-Eval scores, and toxicity classifiers, all of which have critical blind spots. Aligned models are often vulnerable to jailbreaking, stochasticity of generation, and alignment faking. To address this issue, we introduce the **Alignment Quality Index (AQI)**. This novel geometric and prompt-invariant metric empirically assesses LLM alignment by analyzing the separation of safe and unsafe activations in latent space. By combining measures such as the *Davies-Bouldin score (DBS)*, *Dunn index (DI)*, *Xie-Beni index (XBI)*, and *Calinski-Harabasz index (CHI)* across various formulations, AQI captures clustering quality to detect hidden misalignments and jailbreak risks, even when outputs appear compliant. AQI also serves as an early warning signal for alignment faking, offering a robust, decoding-invariant tool for behavior-agnostic safety auditing. Additionally, we propose the **LITMUS** dataset to facilitate robust evaluation under these challenging conditions. Empirical tests on LITMUS across different models trained under DPO, GRPO, and RLHF conditions demonstrate AQI’s correlation with external judges and ability to reveal vulnerabilities missed by refusal metrics. We make our implementation publicly available to foster future research in this area.
The rise of Large Language Models (LLMs) has raised questions about their ability to understand climate-related contexts. Though climate change dominates social media, analyzing its multimodal expressions is understudied, and current tools have failed to determine whether LLMs amplify credible solutions or spread unsubstantiated claims. To address this, we introduce CliME (Climate Change Multimodal Evaluation), a first-of-its-kind multimodal dataset, comprising 2579 Twitter and Reddit posts. The benchmark features a diverse collection of humorous memes and skeptical posts, capturing how these formats distill complex issues into viral narratives that shape public opinion and policy discussions. To systematically evaluate LLM performance, we present the Climate Alignment Quotient (CAQ), a novel metric comprising five distinct dimensions: Articulation, Evidence, Resonance, Transition, and Specificity. Additionally, we propose three analytical lenses: Actionability, Criticality, and Justice, to guide the assessment of LLM-generated climate discourse using CAQ. Our findings, based on the CAQ metric, indicate that while most evaluated LLMs perform relatively well in Criticality and Justice, they consistently underperform on the Actionability axis. Among the models evaluated, Claude 3.7 Sonnet achieves the highest overall performance. We publicly release our code and dataset to foster further research in this domain.