@inproceedings{qiu-park-2019-artificial,
    title = "Artificial Error Generation with Fluency Filtering",
    author = "Qiu, Mengyang  and
      Park, Jungyeul",
    editor = "Yannakoudakis, Helen  and
      Kochmar, Ekaterina  and
      Leacock, Claudia  and
      Madnani, Nitin  and
      Pil{\'a}n, Ildik{\'o}  and
      Zesch, Torsten",
    booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
    month = aug,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/W19-4408/",
    doi = "10.18653/v1/W19-4408",
    pages = "87--91",
    abstract = "The quantity and quality of training data plays a crucial role in grammatical error correction (GEC). However, due to the fact that obtaining human-annotated GEC data is both time-consuming and expensive, several studies have focused on generating artificial error sentences to boost training data for grammatical error correction, and shown significantly better performance. The present study explores how fluency filtering can affect the quality of artificial errors. By comparing artificial data filtered by different levels of fluency, we find that artificial error sentences with low fluency can greatly facilitate error correction, while high fluency errors introduce more noise."
}Markdown (Informal)
[Artificial Error Generation with Fluency Filtering](https://preview.aclanthology.org/ingest-emnlp/W19-4408/) (Qiu & Park, BEA 2019)
ACL
- Mengyang Qiu and Jungyeul Park. 2019. Artificial Error Generation with Fluency Filtering. In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 87–91, Florence, Italy. Association for Computational Linguistics.