@inproceedings{he-etal-2017-deep,
    title = "Deep Semantic Role Labeling: What Works and What{'}s Next",
    author = "He, Luheng  and
      Lee, Kenton  and
      Lewis, Mike  and
      Zettlemoyer, Luke",
    editor = "Barzilay, Regina  and
      Kan, Min-Yen",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/P17-1044/",
    doi = "10.18653/v1/P17-1044",
    pages = "473--483",
    abstract = "We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding, while observing a number of recent best practices for initialization and regularization. Our 8-layer ensemble model achieves 83.2 F1 on theCoNLL 2005 test set and 83.4 F1 on CoNLL 2012, roughly a 10{\%} relative error reduction over the previous state of the art. Extensive empirical analysis of these gains show that (1) deep models excel at recovering long-distance dependencies but can still make surprisingly obvious errors, and (2) that there is still room for syntactic parsers to improve these results."
}Markdown (Informal)
[Deep Semantic Role Labeling: What Works and What’s Next](https://preview.aclanthology.org/ingest-emnlp/P17-1044/) (He et al., ACL 2017)
ACL
- Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep Semantic Role Labeling: What Works and What’s Next. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 473–483, Vancouver, Canada. Association for Computational Linguistics.