@inproceedings{kornai-etal-2016-detecting,
    title = "Detecting Optional Arguments of Verbs",
    author = "Kornai, Andr{\'a}s  and
      Nemeskey, D{\'a}vid M{\'a}rk  and
      Recski, G{\'a}bor",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Grobelnik, Marko  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, Helene  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
    month = may,
    year = "2016",
    address = "Portoro{\v{z}}, Slovenia",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L16-1448/",
    pages = "2815--2818",
    abstract = "We propose a novel method for detecting optional arguments of Hungarian verbs using only positive data. We introduce a custom variant of collexeme analysis that explicitly models the noise in verb frames. Our method is, for the most part, unsupervised: we use the spectral clustering algorithm described in Brew and Schulte in Walde (2002) to build a noise model from a short, manually verified seed list of verbs. We experimented with both raw count- and context-based clusterings and found their performance almost identical. The code for our algorithm and the frame list are freely available at \url{http://hlt.bme.hu/en/resources/tade}."
}Markdown (Informal)
[Detecting Optional Arguments of Verbs](https://preview.aclanthology.org/ingest-emnlp/L16-1448/) (Kornai et al., LREC 2016)
ACL
- András Kornai, Dávid Márk Nemeskey, and Gábor Recski. 2016. Detecting Optional Arguments of Verbs. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 2815–2818, Portorož, Slovenia. European Language Resources Association (ELRA).