@inproceedings{albogamy-ramsay-2016-fast,
    title = "Fast and Robust {POS} tagger for {A}rabic Tweets Using Agreement-based Bootstrapping",
    author = "Albogamy, Fahad  and
      Ramsay, Allan",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Goggi, Sara  and
      Grobelnik, Marko  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Mazo, Helene  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
    month = may,
    year = "2016",
    address = "Portoro{\v{z}}, Slovenia",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L16-1238/",
    pages = "1500--1506",
    abstract = "Part-of-Speech(POS) tagging is a key step in many NLP algorithms. However, tweets are difficult to POS tag because they are short, are not always written maintaining formal grammar and proper spelling, and abbreviations are often used to overcome their restricted lengths. Arabic tweets also show a further range of linguistic phenomena such as usage of different dialects, romanised Arabic and borrowing foreign words. In this paper, we present an evaluation and a detailed error analysis of state-of-the-art POS taggers for Arabic when applied to Arabic tweets. On the basis of this analysis, we combine normalisation and external knowledge to handle the domain noisiness and exploit bootstrapping to construct extra training data in order to improve POS tagging for Arabic tweets. Our results show significant improvements over the performance of a number of well-known taggers for Arabic."
}Markdown (Informal)
[Fast and Robust POS tagger for Arabic Tweets Using Agreement-based Bootstrapping](https://preview.aclanthology.org/ingest-emnlp/L16-1238/) (Albogamy & Ramsay, LREC 2016)
ACL