@inproceedings{grouin-2014-biomedical,
    title = "Biomedical entity extraction using machine-learning based approaches",
    author = "Grouin, Cyril",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L14-1226/",
    pages = "2518--2523",
    abstract = "In this paper, we present the experiments we made to process entities from the biomedical domain. Depending on the task to process, we used two distinct supervised machine-learning techniques: Conditional Random Fields to perform both named entity identification and classification, and Maximum Entropy to classify given entities. Machine-learning approaches outperformed knowledge-based techniques on categories where sufficient annotated data was available. We showed that the use of external features (unsupervised clusters, information from ontology and taxonomy) improved the results significantly."
}Markdown (Informal)
[Biomedical entity extraction using machine-learning based approaches](https://preview.aclanthology.org/ingest-emnlp/L14-1226/) (Grouin, LREC 2014)
ACL