@inproceedings{soler-company-wanner-2014-use,
    title = "How to Use less Features and Reach Better Performance in Author Gender Identification",
    author = "Soler Company, Juan  and
      Wanner, Leo",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L14-1030/",
    pages = "1315--1319",
    abstract = "Over the last years, author profiling in general and author gender identification in particular have become a popular research area due to their potential attractive applications that range from forensic investigations to online marketing studies. However, nearly all state-of-the-art works in the area still very much depend on the datasets they were trained and tested on, since they heavily draw on content features, mostly a large number of recurrent words or combinations of words extracted from the training sets. We show that using a small number of features that mainly depend on the structure of the texts we can outperform other approaches that depend mainly on the content of the texts and that use a huge number of features in the process of identifying if the author of a text is a man or a woman. Our system has been tested against a dataset constructed for our work as well as against two datasets that were previously used in other papers."
}Markdown (Informal)
[How to Use less Features and Reach Better Performance in Author Gender Identification](https://preview.aclanthology.org/ingest-emnlp/L14-1030/) (Soler Company & Wanner, LREC 2014)
ACL