@inproceedings{wang-etal-2012-evaluation,
    title = "Evaluation of Unsupervised Information Extraction",
    author = "Wang, Wei  and
      Besan{\c{c}}on, Romaric  and
      Ferret, Olivier  and
      Grau, Brigitte",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Do{\u{g}}an, Mehmet U{\u{g}}ur  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
    month = may,
    year = "2012",
    address = "Istanbul, Turkey",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L12-1313/",
    pages = "552--558",
    abstract = "Unsupervised methods gain more and more attention nowadays in information extraction area, which allows to design more open extraction systems. In the domain of unsupervised information extraction, clustering methods are of particular importance. However, evaluating the results of clustering remains difficult at a large scale, especially in the absence of reliable reference. On the basis of our experiments on unsupervised relation extraction, we first discuss in this article how to evaluate clustering quality without a reference by relying on internal measures. Then we propose a method, supported by a dedicated annotation tool, for building a set of reference clusters of relations from a corpus. Moreover, we apply it to our experimental framework and illustrate in this way how to build a significant reference for unsupervised relation extraction, more precisely made of 80 clusters gathering more than 4,000 relation instances, in a short time. Finally, we present how such reference is exploited for the evaluation of clustering with external measures and analyze the results of the application of these measures to the clusters of relations produced by our unsupervised relation extraction system."
}Markdown (Informal)
[Evaluation of Unsupervised Information Extraction](https://preview.aclanthology.org/ingest-emnlp/L12-1313/) (Wang et al., LREC 2012)
ACL
- Wei Wang, Romaric Besançon, Olivier Ferret, and Brigitte Grau. 2012. Evaluation of Unsupervised Information Extraction. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 552–558, Istanbul, Turkey. European Language Resources Association (ELRA).