@inproceedings{baker-brew-2008-statistical,
    title = "Statistical Identification of {E}nglish Loanwords in {K}orean Using Automatically Generated Training Data",
    author = "Baker, Kirk  and
      Brew, Chris",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Odijk, Jan  and
      Piperidis, Stelios  and
      Tapias, Daniel",
    booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
    month = may,
    year = "2008",
    address = "Marrakech, Morocco",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://preview.aclanthology.org/ingest-emnlp/L08-1095/",
    abstract = "This paper describes an accurate, extensible method for automatically classifying unknown foreign words that requires minimal monolingual resources and no bilingual training data (which is often difficult to obtain for an arbitrary language pair). We use a small set of phonologically-based transliteration rules to generate a potentially unlimited amount of pseudo-data that can be used to train a classifier to distinguish etymological classes of actual words. We ran a series of experiments on identifying English loanwords in Korean, in order to explore the consequences of using pseudo-data in place of the original training data. Results show that a sufficient quantity of automatically generated training data, even produced by fairly low precision transliteration rules, can be used to train a classifier that performs within 0.3{\%} of one trained on actual English loanwords (96{\%} accuracy)."
}Markdown (Informal)
[Statistical Identification of English Loanwords in Korean Using Automatically Generated Training Data](https://preview.aclanthology.org/ingest-emnlp/L08-1095/) (Baker & Brew, LREC 2008)
ACL