@inproceedings{levy-etal-2017-zero,
    title = "Zero-Shot Relation Extraction via Reading Comprehension",
    author = "Levy, Omer  and
      Seo, Minjoon  and
      Choi, Eunsol  and
      Zettlemoyer, Luke",
    editor = "Levy, Roger  and
      Specia, Lucia",
    booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/K17-1034/",
    doi = "10.18653/v1/K17-1034",
    pages = "333--342",
    abstract = "We show that relation extraction can be reduced to answering simple reading comprehension questions, by associating one or more natural-language questions with each relation slot. This reduction has several advantages: we can (1) learn relation-extraction models by extending recent neural reading-comprehension techniques, (2) build very large training sets for those models by combining relation-specific crowd-sourced questions with distant supervision, and even (3) do zero-shot learning by extracting new relation types that are only specified at test-time, for which we have no labeled training examples. Experiments on a Wikipedia slot-filling task demonstrate that the approach can generalize to new questions for known relation types with high accuracy, and that zero-shot generalization to unseen relation types is possible, at lower accuracy levels, setting the bar for future work on this task."
}Markdown (Informal)
[Zero-Shot Relation Extraction via Reading Comprehension](https://preview.aclanthology.org/ingest-emnlp/K17-1034/) (Levy et al., CoNLL 2017)
ACL
- Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-Shot Relation Extraction via Reading Comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342, Vancouver, Canada. Association for Computational Linguistics.