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Abstract

We introduce TASER (Translation Assessment
via Systematic Evaluation and Reasoning),
a metric that uses Large Reasoning Models
(LRMs) for automated translation quality as-
sessment. TASER harnesses the explicit reason-
ing capabilities of LRMs to conduct systematic,
step-by-step evaluation of translation quality.
We evaluate TASER on the WMT24 Metrics
Shared Task across both reference-based and
reference-free scenarios, demonstrating state-
of-the-art performance. In system-level evalua-
tion, TASER achieves the highest soft pairwise
accuracy in both reference-based and reference-
free settings, outperforming all existing metrics.
At the segment level, TASER maintains com-
petitive performance with our reference-free
variant ranking as the top-performing metric
among all reference-free approaches. Our ex-
periments reveal that structured prompting tem-
plates yield superior results with LRMs com-
pared to the open-ended approaches that proved
optimal for traditional LLMs. We evaluate o3,
a large reasoning model from OpenAI, with
varying reasoning efforts, providing insights
into the relationship between reasoning depth
and evaluation quality. The explicit reasoning
process in LRMs offers interpretability and visi-
bility, addressing a key limitation of existing au-
tomated metrics. Our results demonstrate that
Large Reasoning Models show a measurable
advancement in translation quality assessment,
combining improved accuracy with transparent
evaluation across diverse language pairs.

1 Introduction

Large Language Models (LLMs) have been demon-
strated in zero-shot and few-shot translation scenar-
ios, achieving comparable results to dedicated ma-
chine translation systems (Jiao et al., 2023; Robin-
son et al., 2023). Previous work by (Kocmi and
Federmann, 2023b) used Large Language Models
(LLMs) through prompting to assess the quality
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of a machine translation. In their work, GEMBA-
DA, they prompt a LLM such as GPT to assess
the quality of the translation. Their investigation
shows that with straightforward zero-shot prompt-
ing, LLMs show accuracy exceeding that of all
other non-LLM metrics on the WMT22 (Kocmi
et al., 2022) evaluation dataset. Their subsequent
work, GEMBA-MQM, (Kocmi and Federmann,
2023a) expands on this investigation to detect gran-
ular translation quality errors. GEMBA-MQM uses
a language agnostic prompting strategy with fixed
three-shot prompting to query GPT-4 model to
mark error quality spans. Their results indicate
GEMBA-MQM achieves state-of-the-art accuracy
for system ranking. In this paper, we introduce
TASER. TASER builds on these recent findings by
investigating Large Reasoning Models.

Large Reasoning Models (OpenAI et al., 2024;
QwenTeam, 2024; DeepSeek-AI et al., 2025) use
long chained reasoning to answer input queries.
Reasoning models have shown abilities in problem-
solving, coding, as well as scientific reasoning and
multi-step logical inference (Zhou et al., 2025). Re-
cent findings show that Large Reasoning Models
can also be used in translation. (Liu et al., 2025)
investigated LRMs at machine translation tasks.
In their position paper, they identified three shifts
brought about by LRMs: 1) contextual coherence,
where LRMs resolve ambiguities and preserve dis-
course structure through explicit reasoning via con-
text clues; 2) cultural intentionality, where mod-
els can adapt translations by inferring speaker in-
tent, audience expectations, and socio-linguistic
norms, and finally 3) self-reflection, where LRMs
can iteratively refine translations during inference,
correcting errors dynamically. These three shifts
contribute to more nuanced translations.

In this paper, we present TASER. TASER uses
LRMs with zero-shot prompting to arrive at a trans-
lation quality estimation. We define and investigate
LRMs for the assessment of translation quality in



1005

both reference based and reference free scenarios.
Starting with the evaluation of the prompts from
earlier works that showed state-of-the-art result on
non-reasoning LLMs, we iterated on the DA+SQM
template used for the human assessment of the
translation quality as implemented in the Appraise
framework (Federmann, 2018) for WMT22 (Kocmi
et al., 2022) and adapted it towards LRMs. We
posit that the strengths of LRMs lead to translation
quality estimation that is more aligned with human
judgment, as measured in Tables 1 and 2 below.

The main contributions of this paper are as fol-
lows:

• We achieve state-of-the-art results using Large
Reasoning Models for translation quality as-
sessment on the latest WMT24 (Zerva et al.,
2024) MQM metrics evaluation dataset.

• We evaluate a reasoning model from OpenAI:
o3 (OpenAI, 2025) with different reasoning
efforts: low and high. Reasoning efforts guide
the model on how many reasoning tokens
to generate before creating a response to the
prompt. Our results show that for translation
metric tasks, there isn’t any advantage in us-
ing high reasoning effort as they both show
comparable performance. Performance might
however vary, if we had more fine-grained
control over the reasoning effort budget.

• We conclude that TASER shows great promise
and prompt further investigation into leverag-
ing reasoning models for translation quality
assessment.

2 TASER Metric

In this method, we prompt reasoning models from
OpenAI with the following attributes: source lan-
guage, target language, source text segment, trans-
lation segment, and optionally, the human reference
segment, analogous to (Kocmi and Federmann,
2023b). After iterating and evaluating on differ-
ent prompts, we observed that simple zero-shot
open ended prompting does not result in the best
overall assessment. The prompt that we settled on
includes the attributes as listed above as well as
includes more direction, particularly assessment
instructions and details of what to look for during
quality assessment. We leave evaluating other rea-
soning models and additional language pairs for
future work.

3 Experimental Setup

Our experiments involve measuring the perfor-
mance of TASER on the WMT24 Metrics shared
task (Zerva et al., 2024), where automated metrics
are evaluated against human gold labels. The goal
is to predict a quality score for each segment in a
given test set which can be a variant of Direct As-
sessment (DA) or Multidimensional Quality Met-
rics (MQM). We evaluate TASER across the evalu-
ation set provided by WMT24. Similar to (Kocmi
and Federmann, 2023a), we compare our method
against the best-performing reference-based and
reference free metrics of WMT24.

3.1 Evaluation Datasets

MQM datasets from the WMT24 (Zerva et al.,
2024) are across three language pairs: English →
German, English → Spanish, and Japanese → Chi-
nese. The dataset contains the source sentences,
output of machine translation systems, and ref-
erence translations. The quality of each source-
translation pair is annotated by at least three in-
dependent expert annotators, using DA on a scale
0-100.

3.2 Evaluation Criteria

Our evaluation is the same process as the evaluation
process followed in (Freitag et al., 2024).

At the system level, the evaluation is done with
soft pairwise accuracy (SPA) (Thompson et al.,
2024), which addresses some of the drawbacks
of standard pairwise accuracy which does not ac-
count for the uncertainty of the system ranking.
SPA addresses this problem by using p-values as a
proxy for certainty, where p-values are calculated
between two systems using both the metric and
human scores, then taking 1.0 minus the absolute
difference between the two p-values as the metric’s
score for that pair, resulting in the same statistical
conclusion as the human scores. Moreover, SPA
does not reward or penalize metrics with statisti-
cal ties rather the accuracy score is proportional to
whether or not the metric and human have the same
level of certainty in the ranking.

At the segment level, evaluation follows the
same process as (Freitag et al., 2024, 2023) where
pairwise accuracy is computed with tie calibration,
that is, metrics are given credit for correctly pre-
dicting ties in human scores, while automatically
calibrating for each metric’s natural scale. The ac-
curacy/correlation scores are then simply averaged
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for the final score, placing the metric scores on an
absolute scale and independent of the performance
of other metrics.

4 Results

Metric SPA
TASER-o3-low 0.872
TASER-o3-high 0.868
TASER-o3-high 0.867
TASER-o3-low 0.864
XCOMET 0.861
MetricX-24-Hybrid 0.856
MetaMetrics-MT 0.852
MetricX-24-Hybrid-QE 0.848
gemba-esa 0.846
XCOMET-QE 0.833
COMET-22 0.824
BLEURT-20 0.821
bright-qe 0.805
MetaMetrics-MT-QE 0.802
BLCOM-1 0.789
PrismRefMedium 0.766
PrismRefSmall 0.760
damonmonli 0.739
sentinel-cand-mqm 0.739
YiSi-1 0.735
CometKiwi 0.733
BERTScore 0.714
chrF 0.700
MEE4 0.696
chrfS 0.694
spBLEU 0.671
BLEU 0.663
sentinel-ref-mqm 0.570
sentinel-src-mqm 0.570
XLsimMqm 0.509

Table 1: System level average soft pairwise accuracy
(SPA) for all metrics from the WMT24 across the main
language pairs: English → German, English → Spanish,
Japanese → Chinese. Metrics highlighted gray did not
use a reference translation.

The results for TASER on the WMT24 test
dataset is reported under both reference based and
reference free scenarios. The results are compared
against the MQM gold labels. TASER is eval-
uated under two configurations: TASER-o3-low
(low reasoning effort setting) and TASER-o3-high
(high reasoning effort setting). The low-effort vari-
ant corresponds to settings where there are pos-
sibly fewer inference steps or less inference time

compute as defined by (OpenAI, 2025), while the
high-effort variant leverages more inference time
compute. Table 1 reports soft pairwise accuracy
(SPA) on the system level scenario averaged across
the main language pairs: English → German, En-
glish → Spanish, Japanese → Chinese. The results
in Table 1 show that TASER achieves the best per-
formance under both reference free and reference
based scenarios. The reference-free TASER-o3-
low attains state-of-the-art results. The reference
based TASER-o3-high outperforms all other met-
rics including other reference based metrics, only
behind reference free TASER-o3-low. Table 2
reports the segment level accuracy with tie calibra-
tion. TASER achieves competitive performance
overall with TASER-o3-low, which did not use a
reference translation, achieving best overall accu-
racy among all non reference based metrics.

5 Conclusion

In this paper, we introduced TASER: Translation
Assessment via Systematic Evaluation and Rea-
soning, a novel approach that uses Large Rea-
soning Models (LRMs) for automated transla-
tion quality assessment. Our work demonstrates
that LRMs can measurably outperform traditional
Large Language Models (LLMs) and existing au-
tomated metrics in evaluating translation quality.
TASER achieves state-of-the-art performance on
the WMT24 Metrics Shared Task when evaluated
against the MQM24 dataset. TASER’s perfor-
mance demonstrates that the explicit reasoning ca-
pabilities of LRMs provide tangible benefits for
translation assessment tasks.

In the near future, we plan to focus on explor-
ing the interpretability advantages offered by the
TASER reasoning process and how they might ad-
dress the limitations of existing automated metrics.
In addition, we plan to investigate TASER under
open-source reasoning models.

In conclusion, our results suggest that the integra-
tion of explicit reasoning processes into evaluation
metrics will play a crucial role in advancing the
field of machine translation evaluation, ultimately
contributing to more reliable and trustworthy auto-
mated translation systems across diverse languages
and applications.

Limitations

TASER uses off the shelf Large Reasoning Mod-
els from OpenAI through prompting. The closed
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Metric Accuracy
MetaMetrics-MT 0.596
MetricX-24-Hybrid 0.586
TASER-o3-low 0.584
TASER-o3-high 0.584
TASER-o3-high 0.582
TASER-o3-low 0.581
MetricX-24-Hybrid-QE 0.580
gemba-esa 0.576
XCOMET 0.576
MetaMetrics-MT-QE 0.566
sentinel-cand-mqm 0.560
bright-qe 0.557
XCOMET-QE 0.557
COMET-22 0.554
BLEURT-20 0.550
CometKiwi 0.547
BLCOM-1 0.541
damonmonli 0.532
PrismRefMedium 0.526
YiSi-1 0.525
PrismRefSmall 0.524
XLsimMqm 0.523
BERTScore 0.522
MEE4 0.522
chrfS 0.520
chrF 0.516
spBLEU 0.516
BLEU 0.515
sentinel-ref-mqm 0.515
sentinel-src-mqm 0.515

Table 2: Segment level average accuracy with tie cali-
bration for all metrics from the WMT24 across the main
language pairs: English → German, English → Spanish,
Japanese → Chinese. Metrics highlighted gray did not
use a reference translation.

source nature of these models prevent fine-grained
control over the reasoning chain and restrict the
user from accessing the intermediate reasoning
steps, which can limit the interpretability of the
model’s decision for the quality estimate. More-
over, with off the shelf, closed source models,
there is uncertainty on whether models from Ope-
nAI are trained on standard evaluation datasets
such as those from WMT24. Therefore, we cau-
tion the reader to be mindful of potential data
contamination when interpreting the provided re-
sults. WMT24 contains a limited set of language
pairs which our testing is limited to and results in
other language pairs could differ. TASER specific

prompts were only used in TASER’s evaluation,
and were not used in the other LLM-based metrics
we compared in Table 1 and 2. Some of the per-
formance we saw could be attributed to the prompt
alone. Finally, while LRMs can offer tangible ben-
efits in a variety of tasks, including translation, it
does come with increased inference cost when com-
pared to LLMs.
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A TASER Prompts

Below we provide the prompt template used for the experiments described in this paper. There are two
prompt templates with minimal variations to account for reference free and reference based scenarios.

A.1 Reference Free Prompt Template
{source_lang} Source: ```{source_seg}```
{target_lang} Machine Translation: ```{target_seg}```
Evaluate the quality of a machine translation for a given segment, using the provided source text,
machine-translated text, source language, and target language.

You must analyze the translation without access to any human reference, considering the following:
- Fluency of the translation in the target language.
- Accuracy and completeness of using the information in the source segment.
- Appropriateness of terminology and style for the target language.
- Possible mistranslations, omissions, or additions.

Think step by step:
1. First, compare the source and translation for meaning preservation, fidelity, and missing/additional
content.
2. Then, analyze fluency, grammar, and naturalness in the target language.
3. Finally, synthesize your findings into a final judgment of quality, including a justification.

Continue evaluating as above until all elements have been considered before presenting your final
output.
The output should follow this structure:"Score: <your numerical score>"

Important:
- Only use the source and MT segment for evaluation (no references).
- Always provide your reasoning before the final rating and justification.
- Output MUST be valid and must follow the structure.
- Use a continuous scale from 1 (worst) to 100 (best)

A.2 Reference Based Prompt Template
{source_lang} Source: ```{source_seg}```
{target_lang} Human Reference Translation: ```{reference_seg}```
{target_lang} Machine Translation: ```{target_seg}```
Evaluate the quality of a machine translation for a given segment, using the provided source text,
human reference translation, machine-translated text, source language, and target language.

You must analyze the machine translation in comparison to the human reference, considering the following:
- Fluency of the translation in the target language.
- Accuracy and completeness of using the information in the source segment and the human reference.
- Appropriateness of terminology and style for the target language.
- Possible mistranslations, omissions, or additions.

Think step by step:
1. First, compare the source and machine translation for meaning preservation, fidelity, and
missing/additional content.
2. Then, compare the machine translation with the human reference to analyze fluency, grammar, and
naturalness in the target language.
3. Finally, synthesize your findings into a final judgment of quality, including a justification.

Continue evaluating as above until all elements have been considered before presenting your final
output.
The output should follow this structure:"Score: <your numerical score>"

Important:
- Use the source and MT segment with respect to the human reference for evaluation.
- Always provide your reasoning before the final rating and justification.
- Output MUST be valid and must follow the structure.
- Use a continuous scale from 1 (worst) to 100 (best)


