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Abstract
This paper presents the submission from
Dalian University of Technology (DLUT) and
Global Tone Communication Technology Co.,
Ltd. (GTCOM) to the WMT25 General Ma-
chine Translation Task. Amidst the paradigm
shift from specialized encoder-decoder mod-
els to general-purpose Large Language Models
(LLMs), this work conducts a systematic com-
parison of both approaches across five language
pairs. For traditional Neural Machine Transla-
tion (NMT), we build strong baselines using
deep Transformer architectures enhanced with
data augmentation. For the LLM paradigm,
we explore zero-shot performance and two dis-
tinct supervised fine-tuning (SFT) strategies:
direct translation and translation refinement.
Our key findings reveal a significant discrep-
ancy between lexical and semantic evaluation
metrics: while strong NMT systems remain
competitive in BLEU scores, fine-tuned LLMs
demonstrate marked superiority in semantic fi-
delity as measured by COMET. Furthermore,
we find that fine-tuning LLMs for direct transla-
tion is more effective than for refinement, sug-
gesting that teaching the core task directly is
preferable to correcting baseline outputs.

1 Introduction

The field of machine translation is undergoing
a profound paradigm shift, marked by the as-
cent of general-purpose Large Language Models
(LLMs) that challenge the dominance of special-
ized encoder-decoder Neural Machine Translation
(NMT) architectures (Vaswani et al., 2017). For
years, NMT systems, meticulously trained on vast
parallel corpora, have been honed into highly ef-
fective, specialized tools for a single task: trans-
lation (Ott et al., 2019). In contrast, LLMs, pre-
trained on web-scale multilingual and multimodal
data, emerge as powerful generalists, possessing
not only cross-lingual capabilities but also exten-
sive world knowledge and reasoning skills (Brown
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et al., 2020), which they can apply to translation
with remarkable zero-shot proficiency. This di-
chotomy between the "specialized artisan" (NMT)
and the "generalist polymath" (LLM) raises critical
questions about the future trajectory of machine
translation research.

This transition is further complicated by an evo-
lution in evaluation philosophy. The community
is increasingly moving away from lexical overlap
metrics like BLEU (Papineni et al., 2002), which
may unduly penalize valid, fluent translations that
diverge stylistically from a single reference. The
rise of semantic-aware metrics such as COMET
(Rei et al., 2020) and its successor, XCOMET-XL
(Guerreiro et al., 2023), reflects a demand for eval-
uations that prioritize meaning and fidelity. This
shift is particularly pertinent when comparing NMT
and LLMs, as LLMs often excel at producing se-
mantically coherent and contextually appropriate
outputs that might be lexically dissimilar to the ref-
erence. A core challenge, therefore, is to conduct
a fair comparison that accounts for this evaluation
dichotomy.

In this paper, we leverage our participation in
the WMT25 General Machine Translation task as
a standardized testbed to systematically investigate
this ongoing paradigm shift. Our work is guided
by two central research questions (RQs):

1. (RQ1) How do the performance characteris-
tics of specialized NMT systems and general-
purpose LLMs diverge, particularly under the
contrasting lenses of lexical (BLEU) and se-
mantic (COMET) evaluation metrics?

2. (RQ2) Among supervised fine-tuning (SFT)
strategies for adapting LLMs to translation,
which is more effective: direct instruction on
source-to-target mapping (direct translation),
or training the model to correct outputs from
a baseline system (translation refinement)?
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To address these questions, we developed a com-
prehensive suite of systems. Our NMT pipeline
features deep Transformer models trained with
the fairseq toolkit, enhanced by data augmen-
tation. Our LLM pipeline is built upon the pow-
erful Gemma3 model family (Team et al., 2025),
which we adapt using the LLaMa-Factory frame-
work (Zheng et al., 2024). Our main contributions
are: (1) a robust empirical comparison of NMT and
LLM systems across five language pairs, revealing
a significant divergence between lexical and seman-
tic evaluation scores; (2) a direct analysis of two
distinct LLM fine-tuning strategies, demonstrating
the superior efficacy of direct translation; and (3)
insights into the qualitative differences between the
outputs of these systems, highlighting the semantic
strengths of modern LLMs.

2 Task Description

The core of this task is bilingual text translation.
The data, sourced using the ‘mtdata’ tool(Gowda
et al., 2021) from the official WMT25 repository,
consists of both parallel and monolingual corpora.
Table 1 provides a detailed breakdown of the
training data statistics. For our development
and testing sets, we used newstest2019 for
the Czech→German direction, wmttest2024
for Czech→Ukrainian, English→German, and
English→Ukrainian, and flores200-devtest
(NLLB Team, 2022) for English→Serbian.

3 Methodology

Our methodology is designed as a comparative
study of two distinct translation paradigms. We
first establish a strong baseline representing special-
ized NMT systems and then build upon a generalist
LLM foundation, exploring different adaptation
strategies.

3.1 Data Foundation: Preprocessing and
Quality Filtering

A high-quality dataset is the bedrock of any trans-
lation system. Our preprocessing pipeline is stan-
dardized across all languages and includes punctu-
ation normalization, tokenization, Truecasing, and
Byte Pair Encoding (BPE) (Sennrich et al., 2015)
to manage vocabulary size and handle rare words.

Beyond standard preprocessing, we imple-
mented a rigorous quality filtering stage using the
CometKiwi tool (‘wmt23-cometkiwi-da-xl’ model)
(Rei et al., 2023). For our LLM fine-tuning, we

Data Type Number of Sentences

Parallel Data
cs-de 120.39M
cs-uk 10.62M
en-uk 24.6M
en-ru 77.5M
en-sr 114.04M

Monolingual Data
English 35M
Czech 42.6M
Ukrainian 14.8M
German 72.8M
Serbian 56.8M
Russian 56.2M

Development Sets
cs-de 1997
cs-uk 2316
en-uk 997
en-ru 997
en-sr 1012

Table 1: Statistics for the training and development
datasets.

adopted a nuanced data selection strategy. Rather
than simply taking the top-N scoring sentence pairs,
we extracted a 100,000-pair subset ranked between
the 10,000th and 110,000th positions. This deci-
sion is based on the hypothesis that the absolute
highest-scoring pairs often consist of overly sim-
plistic, short, or formulaic sentences (e.g., from
translation memories), which can lead to models
that are fluent but lack complexity. By targeting a
"high-quality but challenging" segment, we aim to
create a more diverse and robust instruction dataset
for fine-tuning.

3.2 Paradigm 1: Specialized NMT Systems

To represent the best in specialized NMT, we em-
ployed a deep Transformer architecture (‘trans-
former_wmt_en_de’ configuration in fairseq).
These models, featuring 24 encoder and 24 de-
coder layers, serve as our high-performance base-
line. To maximize the utility of available monolin-
gual data—a cornerstone of competitive NMT—we
incorporated iterative data augmentation:

1. Back-Translation (BT): We trained reverse-
direction models (e.g., ru→en) to translate
target-language monolingual data into the
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source language, creating a large, synthetic
parallel corpus to augment the primary train-
ing data.

2. Forward-Translation (FT): The improved
models from the BT step were then used to
translate source-language monolingual data,
further enriching the training mixture in a sub-
sequent iteration.

3.3 Paradigm 2: Generalist LLM-based
Systems

Our exploration of the generalist paradigm cen-
ters on the Gemma3 model family, selected for
its strong preliminary multilingual performance.
Our approach systematically moves from zero-shot
evaluation to targeted adaptation.

3.3.1 Foundation Model and Zero-Shot
Baseline

We first established a zero-shot baseline by eval-
uating several prominent instruction-tuned LLMs
(including the Qwen3 and Gemma3 series) on our
development sets using a direct translation prompt.
This step measures the intrinsic, out-of-the-box
translation capabilities of these models without any
task-specific training.

3.3.2 Supervised Fine-Tuning (SFT)
Strategies

To adapt Gemma3 for high-quality translation, we
investigated two distinct SFT strategies, each test-
ing a different hypothesis about how LLMs best
learn this complex task. To achieve the most thor-
ough adaptation possible, we performed full-
parameter fine-tuning, allowing all weights of
the base model to be updated during the train-
ing process. This approach, while computationally
intensive, ensures that the model can fully special-
ize its internal representations for the translation
task.

Strategy 1: Direct Translation. In contrast, this
strategy reframes the task from generation to a
more complex process of critique and correction.
The model is provided with a triplet: the source
text, a potentially flawed translation from our NMT
baseline, and the high-quality reference. The hy-
pothesis is that by learning to identify and correct
errors—essentially, learning the "delta" between a
mediocre and an excellent translation—the model
develops a more nuanced understanding of quality,
error patterns, and stylistic appropriateness. This

task is guided by a prompt that casts the LLM in
the role of a professional "post-editor":

You are an expert in {Source
language}-{Target language}
translation , with a deep
understanding of both languages '
cultural nuances. Your
translations are accurate , fluent
, and elegant. Please translate
the following {Source language}
text into {Target language }. Only
output the translation.

{Source language} text: {Source text
}

{Target language} translation:
{Target text}

Strategy 2: Translation Refinement. This strat-
egy reframes the task from generation to critique
and correction. The model is provided with a
source text, a potentially flawed translation from
our NMT baseline, and the high-quality reference.
It is then instructed to "polish" or "refine" the base-
line translation. The hypothesis here is that learn-
ing to identify and correct errors is a more cogni-
tively demanding task that could foster a deeper,
more nuanced understanding of translation quality,
error patterns, and stylistic appropriateness, po-
tentially leading to a more robust translator. The
prompt for translation refinement is as follows:

You are a professional {Source
language}-{Target language}
translation refinement expert who
excels at making machine -

translated content more natural
and fluent , ensuring it aligns
better with the target language 's
norms and contexts. Based on the
provided source text and machine
translation , refine and modify

the translation to make it more
accurate and natural.

{Source language} source: {Source
text}

{Target language} translation: {
Baseline translation text}

{Target language} corrected
translation:

{Target text}

4 Experimental Setup

Our experiments were designed to ensure a fair and
reproducible comparison between the NMT and
LLM paradigms.
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4.1 NMT System Configuration
We used the fairseq-py toolkit for all NMT exper-
iments. Our deep Transformer models were trained
with the following configuration:

• Architecture: ‘transformer_wmt_en_de’ (24
encoder/decoder layers, 16 attention heads,
embedding size of 1024).

• Optimizer: Adam (Kingma and Ba, 2017)
with β1 = 0.9, β2 = 0.98.

• Learning Rate Schedule: Inverse square root
scheduler with a warm-up of 4,000 steps and
a peak learning rate of 5× 10−4.

• Regularization: Dropout was set to 0.3 for
the attention and activation functions, and la-
bel smoothing of 0.1 was applied.

• Batching: We used a maximum of 4096 to-
kens per batch per GPU. Models were trained
for 100,000 steps or until convergence on the
development set.

4.2 LLM System Configuration
All LLM experiments were conducted using the
LLaMa-Factory framework.

• Base Models: We used the instruction-tuned
versions of the Gemma3 family: ‘Gemma3-
12B-it’ and ‘Gemma3-27B-it’.

• Fine-Tuning Method: We employed full-
parameter supervised fine-tuning. This in-
volves updating all of the model’s weights,
rather than using a parameter-efficient
method.

• Hyperparameters: Models were trained
for 3 epochs over the 100k-pair instruction
dataset. We used the AdamW optimizer with
a learning rate of 2 × 10−5, a cosine learn-
ing rate scheduler, and a warm-up ratio of
0.03. Training was performed with bfloat16
mixed-precision to optimize memory usage
and throughput.

4.3 Evaluation Metrics
To provide a multifaceted view of translation qual-
ity, we report scores from two distinct metrics:

• sacreBLEU (Post, 2018): A standardized im-
plementation of BLEU that measures n-gram
precision against a reference translation. It
primarily reflects lexical similarity.

• XCOMET-XL (Guerreiro et al., 2023): A
state-of-the-art semantic metric that uses a
large pre-trained model to assess the meaning
equivalence between the source, hypothesis,
and reference. This metric aligns more closely
with human judgments of translation quality.

5 Results and Discussion

In this section, we analyze our experimental re-
sults to answer the research questions posed in
the introduction. We dissect the performance of
each paradigm and discuss the implications of our
findings. The comprehensive results for our NMT
baselines and zero-shot LLM evaluations are con-
solidated in Table 2.

5.1 RQ1: NMT vs. LLMs and the
BLEU-COMET Dichotomy

Our first research question explores the perfor-
mance divergence between specialized NMT and
generalist LLMs. The results in Table 2 reveal a
fascinating and consistent trend that we term the
BLEU-COMET dichotomy.

NMT systems remain formidable competitors
on lexical metrics, often outperforming even
large LLMs in BLEU score. This is most evi-
dent in the en→sr direction, where the NMT base-
line achieves a BLEU score of 38.44, significantly
higher than any other system. Similarly, for cs→de,
the NMT baseline’s BLEU of 29.67 is the high-
est in its category. Regarding data augmentation,
back-translation shows a clear benefit for lower-
resource pairs (e.g., providing a 1.73 BLEU point
gain for cs→uk), but its impact diminishes or even
slightly degrades BLEU on high-resource pairs like
cs→de. Furthermore, forward-translation consis-
tently proves detrimental to performance across
most pairs, likely due to the introduction of unmiti-
gated noise.

In contrast, LLMs exhibit a clear and striking
superiority in semantic fidelity, even in a zero-
shot setting. The Gemma3-27B-it model achieves
the highest zero-shot COMET score in four out
of five language pairs. The most dramatic exam-
ple is en-uk, where the Gemma3-27B-it’s COMET
score of 80.31 massively surpasses the NMT sys-
tem’s 67.55, despite having only a marginal ad-
vantage in BLEU. This pattern holds for cs→de
(94.24 vs. 93.71), cs→uk (91.47 vs. 88.65), and
en→ru (91.73 vs. 91.55). The only exception is
en→sr, where the NMT baseline’s COMET score
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cs→de cs→uk en→uk en→ru en→sr
Model / System BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Specialized NMT Systems
NMT Baseline 29.67 93.71 26.59 85.71 25.97 66.02 28.21 90.11 38.44 90.45
+ Back-translation 29.59 92.80 28.32 88.65 26.22 67.55 28.86 91.55 36.05 86.21
+ Forward-translation 26.37 82.50 24.50 82.50 25.25 66.10 28.55 90.81 31.66 83.54

Generalist LLMs (Zero-shot)
Qwen3-8B 12.72 90.70 13.52 84.25 17.42 67.53 19.79 86.21 10.41 69.25
Qwen3-14B 22.24 92.63 26.57 87.65 23.44 71.52 27.59 87.69 10.58 78.27
Gemma3-12B-it 24.29 93.62 29.24 91.01 25.65 79.08 26.43 91.01 11.42 86.27
Gemma3-27B-it 25.53 94.24 30.50 91.47 27.22 80.31 28.02 91.73 26.62 90.25

Table 2: Comprehensive results comparing our specialized NMT systems against zero-shot performance of generalist
LLMs across all five language pairs. While NMT+BT often leads in BLEU, the Gemma3-27B-it model consistently
achieves the highest COMET scores, highlighting the BLEU-COMET dichotomy.

cs→de cs→uk en→uk en→ru en→sr
Model and SFT Strategy BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Gemma3-12B-it Fine-tuned
Direct Translation SFT 25.45 94.01 27.01 91.23 28.25 80.23 28.31 90.11 31.28 87.16
Refinement SFT 25.71 94.17 26.60 91.57 24.98 79.88 28.01 87.66 30.49 86.59

Gemma3-27B-it Fine-tuned
Direct Translation SFT 26.69 94.50 30.50 92.10 29.57 81.56 29.53 91.50 31.90 90.97
Refinement SFT 26.32 94.32 29.94 91.01 27.83 80.61 29.26 90.50 31.33 88.97

Table 3: Results of supervised fine-tuning on Gemma3 models. The Direct Translation strategy consistently
outperforms the Refinement strategy across nearly all models and language pairs. The fine-tuned Gemma3-27B-it
with Direct SFT emerged as our best overall system.

is competitive (90.45 vs. 90.25). This powerful
trend suggests that LLMs’ vast world knowledge
allows them to generate more fluent and semanti-
cally equivalent translations, a quality that is re-
warded by COMET but can be unfairly penalized
by BLEU’s rigid lexical matching.

5.2 RQ2: Efficacy of SFT Strategies

Our second research question investigates the more
effective SFT strategy for adapting LLMs to transla-
tion. The results from our fine-tuning experiments,
presented in Table 3, provide a decisive answer.

Direct Translation consistently and signifi-
cantly outperforms Translation Refinement. For
both the 12B and 27B model sizes and across all
five language pairs, the models fine-tuned with the
direct translation task achieved superior scores on
both BLEU and COMET. For instance, in the en-
uk direction, the Gemma3-27B-it model fine-tuned
for direct translation achieved a COMET score of
81.56, while the refinement-tuned model scored
only 80.61. Similarly, for en-sr, the direct transla-
tion model achieved a COMET of 90.97, a full two
points higher than the refinement model’s 88.97.
The Gemma3-27B-it with Direct Translation SFT
emerged as our best overall system, achieving the

highest COMET score across the board.
We attribute this clear victory to two primary

factors. First, the refinement task introduces a
higher cognitive load: the model must simultane-
ously comprehend the source, analyze the errors in
a flawed translation, and generate a correction. This
may represent a less direct and noisier learning sig-
nal. Second, the provided baseline translation may
act as a negative anchor, implicitly constraining the
model’s output space and preventing it from gen-
erating a truly novel and superior translation from
scratch. It learns to "edit" rather than to "create."

5.3 Overall Performance and Future Outlook

Our best-performing systems for all language pairs
were the Gemma3-27B-it models fine-tuned us-
ing the direct translation strategy. As shown by
our final official scores in Table 3, these systems
achieved competitive results. However, a gap re-
mains when compared to the top-ranking teams in
the official evaluation.

Our analysis suggests that while full-parameter
SFT on a high-quality 100k dataset is effective,
it represents only the initial stage of true model
alignment. To reach the highest echelons of trans-
lation quality, future work should focus on more
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advanced alignment techniques that have proven
successful in general-domain LLMs. Promising
directions include:

• Continual Pre-training: Further adapting the
base LLM on large-scale, in-domain monolin-
gual and bilingual data before the SFT stage.

• Preference Optimization: Moving beyond
standard SFT to methods like Direct Pref-
erence Optimization (DPO) (Rafailov et al.,
2024), which learns from human or AI-judged
preferences between translation candidates,
thereby optimizing directly for perceived qual-
ity.

This work confirms that while the era of LLMs
is here, achieving state-of-the-art translation per-
formance requires more than just scale; it demands
sophisticated and targeted adaptation strategies.

6 Conclusion

In this paper, we presented a systematic compar-
ison between specialized Neural Machine Trans-
lation (NMT) systems and general-purpose Large
Language Models (LLMs) within the framework
of the WMT25 General MT Task. Our work was
designed to investigate the ongoing paradigm shift
in the field, focusing on the divergence in perfor-
mance characteristics and the efficacy of different
LLM adaptation strategies.

Our investigation yielded clear answers to our
initial research questions. First (RQ1), we identi-
fied a significant and consistent "BLEU-COMET
dichotomy." While our highly optimized NMT sys-
tems remained competitive, and occasionally supe-
rior, in terms of lexical similarity (BLEU), LLMs
demonstrated a marked advantage in semantic fi-
delity (COMET), even in a zero-shot setting. This
finding underscores the limitations of traditional
metrics in the age of LLMs and highlights the
unique ability of these large models to produce
fluent and semantically equivalent translations.

Second (RQ2), our experiments on supervised
fine-tuning strategies provided a decisive result: di-
rect translation proved to be a more effective adap-
tation method than translation refinement. We hy-
pothesize that teaching the model the core source-
to-target mapping task directly provides a cleaner
and more potent learning signal than asking it to
perform the more complex, multi-step task of iden-
tifying and correcting errors from a baseline sys-
tem.

Our best systems, based on full-parameter fine-
tuning of the Gemma3-27B-it model, achieved
highly competitive results. However, our analy-
sis suggests that the next frontier for LLM-based
translation lies beyond standard SFT. The path to
state-of-the-art performance will require more so-
phisticated alignment techniques that can better
bridge the gap between the LLMs’ vast genera-
tive capabilities and the nuanced preferences of
human evaluation. Future work should therefore
prioritize the exploration of methods such as con-
tinual pre-training on in-domain corpora and, most
promisingly, preference optimization techniques
like DPO.
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