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Abstract

This paper presents the submission of
NTTSU for the constrained track of the
English–Japanese and Japanese–Chinese at the
WMT2025 general translation task. For each
translation direction, we build translation mod-
els from a large language model by combining
continual pretraining, supervised fine-tuning,
and preference optimization based on the trans-
lation quality and adequacy. We finally gen-
erate translations via context-aware MBR de-
coding to maximize translation quality and
document-level consistency.

1 Introduction

We describe our NTTSU translation system in the
WMT’25 English–Japanese (En–Ja) and Japanese–
Chinese (Ja–Zh) general translation task under the
constrained track.

Our translation models are trained on a pre-
training large language model (LLM), Qwen3-
14B (Qwen Team, 2025). We combine train-
ing methods for each translation direction from
three training stages: continual pretraining
(CPT) (Ke et al., 2023), supervised fine-tuning
(SFT) (Zhang et al., 2024), and preference opti-
mization (PO) (Rafailov et al., 2023). In PO, to
maximize the translation quality and adequacy,
we use two different reward metrics, MetricX-
24 (Juraska et al., 2024) and coverage of word
alignment between source and target texts (Wu
et al., 2024). After training the models, we generate
translations using context-aware minimum Bayes
risk (MBR) decoding, which maximizes the ex-
pected translation quality (Kumar and Byrne, 2004;
Eikema and Aziz, 2020) and also utilizes context
information of both source and generated target
texts, though we use a sentence-level metric (Kudo
et al., 2024; Pombal et al., 2024). The following
sections show the details of our system.

2 Approaches

2.1 Training

Continual pretraining Continual pretraining
(CPT) continues to train LLM models based on
the next token prediction as well as pretraining
using monolingual corpora (Ke et al., 2023). Let
y := (y1, y2, . . . , y|y|) ∈ V∗ be a sequence of to-
kens in a corpus, where V∗ is the Kleene closure
of vocabulary V . CPT optimizes the model param-
eter θ by minimizing the loss function LCPT over a
monolingual corpus DCPT := {yi}|DCPT|

i=1 ⊂ V∗:

argmin
θ

∑
y∈DCPT

LCPT(y; θ), (1)

LCPT(y; θ) := −
|y|∑
t=1

log pθ(yt|y<t). (2)

For efficiency, y[t−c,t) := (yt−c, yt−c+1, . . . yt−1)
is used instead of y<t in practice, where c ∈ N
is a length of a context window. This objective is
the same as the pretraining loss of causal language
models, i.e., the model is trained to predict the next
token yt under the condition of c context tokens.

Supervised fine-tuning Supervised fine-tuning
(SFT) adapts a pretrained model to downstream
tasks using labeled data (Zhang et al., 2024).
Specifically, given a pretrained model parameter
θ, SFT updates it on a labeled dataset DSFT :=

{(xi,yi)}|DSFT|
i=1 ⊂ V∗ × V∗, where xi and yi are

the input and its corresponding ground-truth output
sequence, respectively, as follows:

argmin
θ

∑
(x,y)∈DSFT

LSFT(x,y; θ), (3)

LSFT(x,y; θ) := − log pθ(y | x). (4)

This encourages the model to generate outputs that
are consistent with the human-annotated targets.
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Preference optimization Preference optimiza-
tion (PO) aims to align a trained model with pref-
erences. One of the major PO algorithms is di-
rect PO (DPO), which uses pairwise comparison
data instead of explicit reward models (Rafailov
et al., 2023). Let DPO := {(xi,y

+
i ,y

−
i )}

|DPO|
i=1 ⊂

V∗ × V∗ × V∗ be a triplet dataset that consists
of a prompt x and its corresponding output pairs
(y+,y−), where y+ is preferred over y− accord-
ing to human feedback or a reward function, i.e.,
y+ ⪰ y−. PO tunes a model θ by minimizing a
pairwise loss that encourages the model to generate
y+ rather than y−. We minimize the following
objective function that incorporates adaptive re-
jection (Xu et al., 2025) into SimPO, a variant of
DPO (Meng et al., 2024):

argmin
θ

∑
(x,y+,y−)∈DPO

LPO(x,y
+,y−; θ), (5)

LPO(x,y
+,y−; θ) :=

− log σ
(
r(x,y+)− τθ(y

+,y−)rθ(x,y
−)− γ

)
+ α log pθ(y

+|x), (6)

where α ∈ R is a weight of the behavior cloning
regularizer, γ ∈ R is a reward margin between
y+ and y−. Note that rθ(x,y), τθ(y+,y−), and
zθ(y

+,y−) are defined as follows:

rθ(x,y) :=
β

|y|
log pθ(y|x), (7)

τθ(y
+,y−) := min

(
eη·zθ(y

+,y−) − 1, 1
)
, (8)

zθ(y
+,y−) :=

∣∣∣∣ log pθ(y+|x)
|y+|

− log pθ(y
−|x)

|y−|

∣∣∣∣ ,
(9)

where β ∈ R and η ∈ R are hyperparameters.

Stepwise preference optimization Stepwise
PO (Wachi et al., 2024) is an extension of PO
designed to align models with multiple prefer-
ence metrics. It optimizes the model using mul-
tiple preferences sequentially, where each stage
focuses on a distinct preference objective. Conse-
quently, by chaining multiple preference optimiza-
tion stages, the model incrementally aligns with
multiple-perspective preferences.

2.2 Decoding

We generate translations via context-aware mini-
mum Bayes risk (MBR) decoding, which leverages
sentence-level metrics for MBR decoding (Goel

Algorithm 1: Context-aware MBR decoding
Given :Translation model θ, utility function u, the

number of hypotheses |H|, and the context
size C ∈ N.

Input :Source document X := (x1, . . . ,x|X|)
where xi ∈ V∗ is the i-th source sentence.

Output :Target document Y := (y1, . . . ,y|Y|).
1 Y ← ϕ
2 Create queues: Cx ← ϕ and Cy ← ϕ
3 for i← 1 . . . |X| do
4 Enqueue(Cx,xi)

// H is a multiset of hypotheses.

5 H ← {hk ∼ p(yi|Cx,Cy; θ)}|H|
k=1

// We use the same candidate set for
hypotheses and pseudo-references.

6 ŷi ← argmaxh∈H
1

|H|
∑|H|

k=1 u(h,hk)

// ◦ denotes concatenetion.
7 Y ← Y ◦ ŷi

8 Enqueue(Cy, ŷi)
9 while |Cx| > C do

10 Dequeue(Cx)
11 while |Cy| > C do
12 Dequeue(Cy)
13 return Y

and Byrne, 2000; Kumar and Byrne, 2004; Eikema
and Aziz, 2020) yet utilizes both source and gener-
ated target context information.

MBR decoding The goal of MBR decoding is
to find a translation that maximizes the expected
utility rather than the output probability (Goel and
Byrne, 2000; Kumar and Byrne, 2004). The objec-
tive is formally defined as follows:

y⋆
MBR := argmax

h∈V∗
E

y∼Pr(·|x)
[u(h,y)], (10)

where Pr(·|x) is the true probability of human
translation and u : V∗×V∗ → R is a utility function
that evaluates a hypothesis under the given refer-
ence y and satisfies h+ ⪰ h− ⇐⇒ u(h+,y) ≥
u(h−,y). Since searching over V∗ and calculating
the expectation over the output space are infeasible,
the objective of MBR decoding is approximated
by the Monte Carlo (MC) estimation (Eikema and
Aziz, 2020, 2022). We denote a hypothesis set
by H ⊂ V∗. The MBR decoding with the MC
estimation is calculated as follows:

yMBR := argmax
h∈H

1

|Ŷ|

∑
y∈Ŷ

u(h,y), (11)

where Ŷ := {yi ∼ pθ(y|x)}
|Ŷ|
i=1 is a multiset,

a.k.a. bag, of pseudo-references, translation sam-
ples drawn from the output probability of transla-
tion model θ. Typically, hypotheses are also used
as pseudo-references.
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Figure 1: Overview of our translation system.

Context-aware MBR decoding For document-
level translation, we extend MBR decoding to a
context-aware method. However, most automatic
evaluation metrics, which are used for the utility
function, are designed for sentence-level metrics.
To bridge this gap, we determine output transla-
tions for each sentence by MBR decoding with a
sentence-level utility and add the generated trans-
lation to the context, similar to Kudo et al. (2024)
and Pombal et al. (2024). Algorithm 1 shows our
decoding algorithm, which autoregressively gener-
ates sentence-level translations at each step. Since
the WMT’25 general translation task provides the
source document without sentence segmentation,
we first apply a sentence segmenter before running
our decoding algorithm. In Line 5, hypotheses are
sampled given the source and target context sen-
tences, i.e., Cx and Cy, respectively. The source
context includes the current source sentence xi as
well as the preceding ones, while the target con-
text consists only of previously generated target
sentences. Accordingly, the model focuses on the
current sentence xi and generates its correspond-
ing target sentence yi under the given contexts,
naturally. The hyperparameter C ∈ N denotes the
size of the context queues. Rather than using a
fixed number of sentences, we set it based on the
paragraph size, i.e., a variable number of sentences
depending on the dataset format.

Method En–Ja Ja–Zh

Continual pretraining (CPT) ✓ ✗
Supervised fine-tuning (SFT) ✓ ✗
Preference optimization (PO) — —

Quality-aware PO ✓ ✓
Adequacy-aware PO ✗ ✓

Context-aware MBR decoding ✓ ✓

Table 1: List of methods we employed.

Hyperparameter CPT SFT

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
(Loshchilov and Hutter, 2019)

Learning rate 2.5× 10−5 1× 10−6

Scheduler cosine inverse square root
Warmup ratio 1% 1%
Weight decay 0.1 0.1
Gradient clip 1.0 1.0
Epoch 1 3
Batch size 1,024 chunks 64 sentence pairs
Chunk size 2,048 tokens N/A
Accelarator DeepSpeed ZeRO-2 (Rasley et al., 2020)
Precision bfloat16 bfloat16

Table 2: Hyperparameters of CPT and SFT.

3 Submission System

We train En–Ja and Ja–Zh translation models
from a pretrained LLM, Qwen3-14B (Qwen Team,
2025). According to our preliminary experiments
and subjective judgment, we selected the combi-
nations of training methods. Finally, we generate
translations via context-aware MBR decoding. We
show the system overview in Figure 1 and Table 1.

3.1 Continual pretraining

We perform the bilingual CPT only for the En–
Ja model. For the training data of CPT, we use
JParaCrawl v3.0 (Morishita et al., 2022) and fil-
ter it into 20.8M sentence pairs using LEALLA-
large (Mao and Nakagawa, 2023). We create train-
ing examples following Kondo et al. (2024). The
hyperparameters of CPT are listed in Table 2.

3.2 Supervised fine-tuning

Similar to CPT, we conduct supervised fine-tuning
(SFT) only for the En–Ja model. For the training
data of SFT, we use the development and test sets of
the WMT’20 translation task (Barrault et al., 2020)
and FLoRes-200 (NLLB Team et al., 2022), along
with the train set of the Kyoto Free Translation
Task (KFTT) (Neubig, 2011). For the development
set, we use the test set of the WMT’21 translation
task (Akhbardeh et al., 2021). The hyperparameters
of SFT are also listed in Table 2.
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3.3 Preference optimization
To maximize translation quality and adequacy, we
perform PO with two reward metrics. For En–Ja,
we apply the quality-aware PO on top of the model
trained via SFT. For Ja–Zh, we apply both quality-
and adequacy-aware PO through stepwise PO. Note
that we do not apply CPT and SFT to the Ja–Zh
model as listed in Table 1; thus, we directly tune
the pretrained Qwen3-14B.

Quality-aware PO To improve translation qual-
ity, we employ an automatic evaluation metric that
highly correlates with human assessments for cre-
ating the preference data. Specifically, we first
randomly sample 20,000 source sentences from the
NewsCrawl corpus (Kocmi et al., 2024), and gener-
ate translations for each source sentence using two
LLMs, Qwen3-32B and Aya-Expanse-32B (Dang
et al., 2024). To obtain high-quality translations
efficiently, we employ COMET1 (Rei et al., 2022a)
-based MBR decoding using 64 hypotheses sam-
pled via epsilon sampling with ε = 0.02 (Fre-
itag et al., 2023). These high-quality translations
and the baseline translations, generated via beam
search from Qwen3-14B, are then compared using
MetricX-24-XXL (Juraska et al., 2024). Among
the outputs from the three models, we label the
highest-quality translation as the preferred, i.e.,
chosen, instance and the lowest-quality transla-
tion as the non-preferred, i.e., rejected, instance.
From these paired instances with each source sen-
tence, we construct the training dataset for quality-
aware PO. Finally, we train the model by optimiz-
ing Equation (5) on the created preference data
with α = 1.0, β = 0.2, η = 1.5, γ = 0.005.

Adequacy-aware PO To mitigate hallucination
and omission, i.e., overgeneration and undergener-
ation, we also employ the word alignment-based
preference metric (Wu et al., 2024) for Ja–Zh. For
the preference data, we randomly sample 10,000
source sentences from CCAligned (El-Kishky et al.,
2020), where each sentence has at least 15 charac-
ters. To label the preference data, we use the cover-
age score obtained via word alignment calculated
by WSPAlign2 (Wu et al., 2023). Apart from these
two modifications, we follow the same procedure as
in the quality-aware PO, but with different hyperpa-
rameters: α = 1.0, β = 0.01, η = 1.5, γ = 0.005.

1https://huggingface.co/Unbabel/
wmt22-comet-da

2https://huggingface.co/qiyuw/
WSPAlign-mbert-base

3.4 Prompt templates
We basically use the following template that turns
on the continue_final_message (CFM) option
defined in the tokenizers of Huggingface transform-
ers (Wolf et al., 2020):

<|im_start|>user
Translate this from English to Japanese:
English: ...<|im_end|>
<|im_start|>assistant
<think>
</think>
Japanese:

We call this “CFM” template. The CFM template
inserts the target language name with a colon into
the last of the assistant chat and does not close it.
Hence, the model naturally generates a target text
following the target language name.

However, in our preliminary Ja–Zh translation
experiments, we observed that generated texts with
the CFM template are often collapsed due to hallu-
cinations. Thus, we change the inference template
to the below “AGP” template, which enables the
add_generation_prompt (AGP) option instead of
the continue_final_message option:

<|im_start|>user
Translate this from English to Japanese:
English: ...
Japanese:<|im_end|>
<|im_start|>assistant
<think>
</think>

Although there is a slight difference between train-
ing and inference, we employ this method because
hallucinations decrease in Ja–Zh.

To summarize, we train both En–Ja and Ja–Zh
models with the CFM template, and generate trans-
lations with CFM for En–Ja and AGP for Ja–Zh.

3.5 Decoding
In decoding, we use MetricX-24-XXL (Juraska
et al., 2024) for the utility function u. During
decoding, we generate 64 translation candidates
via epsilon sampling with ε = 0.02 (Freitag
et al., 2023) and use them for both hypotheses and
pseudo-references. We split the source documents
into sentences using segment-any-text3 (Frohmann
et al., 2024). We use at most one previous para-
graph as context, i.e., the target context includes a
preceding generated paragraph and generated sen-
tences until the current focused sentence.

3https://huggingface.co/segment-any-text/
sat-12l-sm

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/qiyuw/WSPAlign-mbert-base
https://huggingface.co/qiyuw/WSPAlign-mbert-base
https://huggingface.co/segment-any-text/sat-12l-sm
https://huggingface.co/segment-any-text/sat-12l-sm
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PO

CPT SFT Quality Adequacy MTX24↓ XCMT↑ KIWI22↑

✗ ✗ ✗ ✗ 4.44 79.89 83.04
✓ 4.39 80.28 82.97

✓ ✗ 4.32 80.60 83.08
✓ 4.44 79.67 83.08

✓ ✗ ✗ 4.82 76.58 81.89
✓ 4.67 77.82 82.52

✓ ✗ 4.32 80.82 83.05
✓ 4.47 79.31 83.06

✓ ✗ ✗ ✗ Failed Failed Failed
✓ 5.35 72.97 81.04

✓ ✗ 4.30 81.02 83.15
✓ 4.50 79.81 83.09

✓ ✗ ✗ 4.97 75.82 81.36
✓ 4.79 77.10 82.07

✓ ✗ 4.29 81.27 83.11
✓ 4.54 79.66 82.99

Table 3: Comparisons of training methods on the
WMT’24 En–Ja test set. The bold font indicates the
best scores in each metric. The green highlighted rows
indicate the setting of our submission system.

4 Experiments

4.1 Ablation study of training methods

We investigate the effects of each training method.

Setup We compare the combination of train-
ing methods: CPT, SFT, quality-aware PO, and
adequacy-aware PO. We train models with the
same training data and hyperparameters as our sub-
mission system, as described in Section 4.1, except
for the differences noted below. In Ja–Zh, we use
the same hyperparameters as listed in Table 2 for
both CPT and SFT. For the training data of CPT in
Ja–Zh, we use the parallel corpora listed in “WMT
2025 Translation Task Training Data”4. We filter
them to retain only those with CometKiwi-22 (Rei
et al., 2022b) scores between 0.5 and 0.88, and
then clean them using bifixer (Ramírez-Sánchez
et al., 2020). In both En–Ja and Ja–Zh, the source
sides of training examples are shared between SFT
and adequacy-aware PO. The translation quality is
evaluated on MetricX-24-XXL (MTX24) (Juraska
et al., 2024), xCOMET-XXL (XCMT) (Guerreiro
et al., 2024), and CometKiwi-22 (KIWI22) (Rei
et al., 2022b) in the test sets of WMT’24 En–Ja and
Ja–Zh translation tasks (Kocmi et al., 2024).

4https://www2.statmt.org/wmt25/mtdata/

PO

CPT SFT Quality Adequacy MTX24↓ XCMT↑ KIWI22↑

✗ ✗ ✗ ✗ 3.51 73.55 73.26
✓ 3.44 73.75 73.12

✓ ✗ 3.46 74.03 73.12
✓ 3.43 74.36 73.38

✗ ✓ ✗ ✗ 4.17 70.20 72.38
✓ 4.08 70.96 72.32

✓ ✗ 3.53 73.17 73.10
✓ 3.54 73.26 73.15

✓ ✗ ✗ ✗ Failed Failed Failed
✓ Failed Failed Failed

✓ ✗ 3.92 66.81 71.73
✓ 4.06 66.71 72.00

✓ ✓ ✗ ✗ 5.43 63.97 70.63
✓ 4.38 68.10 71.42

✓ ✗ 3.57 71.28 73.07
✓ 3.65 71.14 73.10

Table 4: Comparisons of training methods on the
WMT’24 Ja–Zh test set. The bold font indicates the
best scores in each metric. The green highlighted rows
indicate the setting of our submission system.

Figure 2: Examples of stepwise preference optimiza-
tion (PO). Purple and red texts highlight corresponding
phrases in the source text and its translations. Blue text
provides descriptive labels for each step.

Results The results of automatic evaluation on
the WMT’24 test sets are demonstrated in Table 3
and Table 4. In the tables, “Failed” indicates that
it failed to generate translations due to hallucina-
tions or critical errors, and it cannot be evaluated.
As demonstrated in Table 3 and Table 4, the con-
figuration of our submission system achieved the
best MetricX-24-XXL and xCOMET-XXL scores
in both En–Ja and Ja–Zh. In addition, we also con-
firmed through subjective judgment that these mod-
els have successfully generated the highest-quality
translations compared to other settings. Accord-
ingly, we selected these combinations of training
methods for each translation direction.

Figure 2 shows translation examples of the same
sentence from the WMT24 test set, generated by

https://www2.statmt.org/wmt25/mtdata/
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the base model (Qwen3-14B), the model after an
initial training step with Quality-aware PO, and
the model after a subsequent step with Adequacy-
aware PO. As shown in the figure, the initial
translation from the base model is relatively low
quality, incorrectly translating “froth over.” Af-
ter training with Quality-aware PO, the translation
becomes more fluent and natural overall. How-
ever, hallucinations occur during translation—for
example, rendering “froth over,” which expresses
anger, as merely expressing dissatisfaction, and in-
terpreting “anti,” which denotes countermeasures,
as “prohibit.” In contrast, the model trained with
Adequacy-aware PO produces a translation that is
accurate and faithful to the source text.

It is noteworthy that among the three translations,
the one from the Quality-aware PO model achieved
the best MetricX-24-XXL score. From up to below,
the MetricX-24-XXL scores are 6.34, 4.99, and
5.54. This indicates that even advanced metrics
such as MetricX-24-XXL may assign better scores
to fluent and natural translations that contain hallu-
cinations than to factually accurate but less fluent
ones.

4.2 Comparison of decoding strategy

We evaluate our decoding algorithm using the final
submission system by comparing it with a baseline
context-aware MAP decoding.

Setup We use the WMT’25 En–Ja and Ja–
Zh translation task and evaluate the translation
quality of decoding methods using reference-
free quality estimation (QE) models, MetricX-
23-QE-XXL (Juraska et al., 2023), MetricX-24-
XXL5 (Juraska et al., 2024), and CometKiwi-23-
XXL (Rei et al., 2023). We compare our decod-
ing algorithm with context-aware MAP decoding,
which employs a beam search with a beam size of 5.
The context sizes of both methods are at most one
previous paragraph, as described in Section 3.5.

For evaluation, we first apply a sentence seg-
menter6 (Frohmann et al., 2024) to each source and
target paragraph and compute the scores across all
pairs of source and target sentences for each para-
graph. Then, we compute the score alignment that
maximizes the total scores. Finally, the document-
level QE scores are calculated by averaging the

5MetricX-24 is a hybrid reference-based/-free metric, so
we use it as a reference-free QE model in this evaluation.

6https://huggingface.co/segment-any-text/
sat-12l-sm

Direction Decoding MTX23↓ MTX24↓ KIWI23↑

En–Ja MAP 3.4 4.9 74.7
MBR 3.0 4.2 77.2

Ja–Zh MAP 4.0 4.9 63.1
MBR 3.5 4.7 64.8

Table 5: Reference-free quality estimation scores on the
WMT’25 test set. The bold font indicates the best scores
in each translation direction. The green highlighted
rows indicate the setting of our submission system.

paragraph-level QE scores.

Results Table 5 demonstrates the translation qual-
ity of decoding methods. The table shows that
MBR decoding consistently outperformed MAP
decoding across all metrics, even though we used
only MetricX-24-XXL for the utility function. One
reason for these results is that MAP decoding tends
to propagate translation errors, including halluci-
nations, whereas MBR decoding carefully selects
translations based on the expected utility computed
from the evaluation metric and other translation
samples, thereby mitigating the generation of patho-
logical sequences.

5 Conclusion

We built our system on the WMT’25 general trans-
lation task in En–Ja and Ja–Zh. Our models were
trained with the combinations of CPT, SFT, and
stepwise PO based on the quality- and adequacy-
aware rewards, for each translation direction. To
maximize the translation quality and document-
level consistency, we generated translations via
context-aware MBR decoding.

In document-level translation, we observed that
LLMs are more likely to generate collapsed hallu-
cination texts. To mitigate this issue, we employed
adequacy-aware PO. Nevertheless, in some cases,
the models still failed to generate translations. We
hope to further improve hallucination mitigation in
document translation.

Limitations

Metric bias We used MetricX-24-XXL for the
preference data creation in PO and the utility func-
tion of MBR decoding, which heavily relied on a
single metric. Thus, our system may be affected by
the metric bias.

Domain adaptation We built a single system for
each translation direction, regardless of domains,

https://huggingface.co/segment-any-text/sat-12l-sm
https://huggingface.co/segment-any-text/sat-12l-sm
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while the WMT’25 general translation task con-
tains multiple domains. By considering domain-
specific knowledge and preferences, further im-
provements in translation quality can be expected.

Multimodal translation In the speech domain,
original videos are also provided in addition to
plain texts transcribed by an automatic speech
recognition (ASR), but we did not use them. This
means that ours is a cascade-style speech-to-text
or video-to-text translation in the speech domain.
By utilizing the original videos and audio, we can
expect to suppress the propagation of errors caused
by an ASR system.
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